Campground Master v4.0 Maintenance Functions 1

Advanced Customizations

Overview

The functions in this section can be used for many things, from making minor changes to a receipt format to
making extensive changes to the system's functionality.

NOTICE:

These features are considered to be advanced development tools built in the program and are
documented sufficiently for an experienced programmer or someone proficient with database design.
Some sample forms and reports are provided which can be used as-is, modified for your needs, or
studied as examples.

Our normal technical support will answer basic questions about the capabilities of these functions, but we
cannot explain detailed examples or provide training for expressions programming, or debug changes
that you've made. It can take some time to learn the details of these functions, even for experienced
programmers, since they use a unique "language". If you don't have someone available with the time to
experiment and learn these functions sufficiently to create the forms or reports you need, we can create
forms or reports for an additional charge.

The "Advanced Customizations” functionality is considered an advanced customization system for
Campground Master. Most users will be able to accomplish everything they need to without creating their
own reports and forms. Before delving into these functions, we suggest that you thoroughly learn the rest of
the system setup and investigate the other options -- there's a lot of flexibility already present in the various
Tab View Options, Printing Options, Program Options, Data Field Definitions, Pick Lists, and Park Setup
functions. If none of the normal options accomplish exactly what you want and you need to make a specific
change to a tab view, receipt form, color coding or other functionality, then you can probably accomplish it
through this section. However, we recommend that you do check the other options and/or contact us first to
see if it can be done with normal options changes instead.

Samples

There are a number of sample Forms, Queries, and Color Schemes installed with Campground Master (in
the Samples folder). These can be imported and used as-is, or you can make adjustments for your needs, or
just look at them as examples. For details on importing the samples, refer to each of the following "Setup"
sections according to what you want to import.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 2

Tab Views Setup

The Tab Views in Campground Master are initially configured with all of the normal content views -- Rack,
Arrivals, Departures, etc., and will include a Map and/or Query view if any maps or queries are set up. You
can change the configuration of these views through Maintenance / Advanced Customizations / Tab Views.
There are several reasons you might want to do this:

To change the operator access levels for viewing or printing each view.

To change the order, e.g. to make Map the first view so it's shown by default.
To rename them to something more to your liking

To make the names shorter to fit on a low-resolution screen

To remove views that you never use

To add multiple Query views showing specific queries by default

Note that changes to the tab view setup apply to all workstations.

Tab View Setup

The Tab View Setup dialog lists all of the tab views with their general information. Tabs are shown here
whether they're enabled or not. If there's one that you don't plan to use, we recommend that you Edit it and
uncheck "Enabled”, rather than deleting it from the list. This way it's easy to re-enable later.

The order of views in the list will be the order they're displayed in Campground Master (skipping disabled
ones of course). Note that any Map or Query views will only appear of one or more maps or queries are set

up.
You can use the typical functions to add, edit, copy, move or delete tab views in the list.
Add the default tab views

This special function will add all of the default views to the list (which may result in duplicates). The main
purpose of this is if you make some changes and then want to get back the original settings.

Note that if you delete or disable all tab views, the Rack view will still be shown by default (the program can't
function without any tab views). If you re-enter Setup, it will prompt you to add all default views back in. It
will also add all views back in automatically when you re-start the program.

Adding or Editing Tab Views

When you Add or Edit a view (or double-click on it in the Tab View Setup list), a simple dialog will allow you
to enter the name, type, access levels and notes. You can also disable or re-enable it.

Tab Name

The name you enter here will be used as the header (hame) of the tab, and also for the heading if you print
the view.

Note that if you add tabs or change the names, you may not be able to see all of the tabs on the screen at
once. If this happens, a pair of right/left arrows will be shown on the right side, which you can use to scroll
the tabs back and forth. However it's usually better to get all of the tabs to fit on the screen. You can do this
by shortening the Names of the tabs -- you'll notice that the tabs must all be the same size, so it uses the
largest of the tab names to determine the size of all tabs.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 3

Likewise, if you have extra space and prefer to widen the tabs, you can use longer names or even put spaces
on each side of the longest name to force the tabs wider. You may already see this in the default "Payments
Due" tab, if your screen is wide enough. Remember that these settings are used on all computers, so you'll
have to keep the lowest-resolution screen in mind.

Content Type

The Content type is a selection list of the standard tab view types. The only special one is Query. In this
view, you have the option to select a specific query to show. This essentially allows you to create a custom
tab view using a query you've defined. If you select a query here, then only that query will be shown with no
option to change it on the tab view. If you don't select a query, then the tab view will have a drop-down list
where you can select a query. Thus you can have some “fixed" query tab views that show reports you need
most, and also have a standard "Query" tab that allows you to dynamically select any query you've created.

Note that only one enabled entry is allowed for each of the types, except Query. There's no reason to add
multiple Arrivals views, for instance, because they would be the same (they can't be set up with different
options just because they're on different tabs).

Expressions

Overview

The "Expressions” functionality, or more specifically the expression processing engine, is the primary
mechanism which allows extensive customization of forms, queries, reports, color schemes, and other
elements of Campground Master. This is essentially a programming language with many built-in functions to
access data, manipulate information, and generally get at any particular information you need. Since
expressions are used in all of the advanced customization functions, you will need to get familiar with them in
order to do your own customization.

In simple terms, an expression can be thought of as a calculation, or mathematical expression. If you're
familiar with formulas in Microsoft Excel, or expressions used in Microsoft Access or dBase queries, then
you'll have a big head start. For Scripting, familiarity with programming languages like Basic or C++ will
help.

Expressions can be very simple or very long and complex, but every expression ultimately evaluates into a
single value. This value can be a number, a string of text, a date, a boolean (true/false) value, or a data
record pointer. The type of expression needed depends on the situation. For instance, boolean expressions
are used in many places for filtering data or where conditional logic is needed like color schemes. Numeric
expressions are used where calculated numbers are needed like transaction reports, and text expressions are
used where text should be displayed such as receipt forms or query columns.

Macros are single expressions that can be called by name, with optional replacement parameters. They
allow re-using common expressions, or simplifying things by calling a complex expression inside another
expression. If you're familiar with Macros in the C programming language, they basically work the same way.

Scripts are a list of multiple expressions for performing more complex calculations, which can be called like
a function from another expression. This is similar to defining a function in C or a procedure in Visual Basic
or Pascal.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 4

Expression Syntax

An Expression is simply a formula with values and functions, or at least one side of a formula, which
evaluates down to a single value. The primary power of expressions comes from the built-in functions for
extracting data values, converting and manipulating values, and making things happen.

An expression may contain the following elements:
Operators : +, -, >, etc.
Numeric values : 2, 5.3, .005, etc.
Text values : "Hi", 'a’, etc.
Boolean values : .T. or .F.
Date values : {1/1/2005}
Function calls, often with parameters : Upper("hi")
Variables, user-defined : R, Total, etc.

The lowest-level format of an expression is a single value or function, or two expressions separated by an
operator.

Here are some simple examples of expressions:

"Hell o world"

2 +2

Pi() * (R"2)

Percent (55/100)

Resv: Resv_Adults > 2

iif(ResviResv_Adults > 2, "Extra adults present”, "Two or |less adults")
Fi el dDat e(Thi sResv(), "Resv_First_Date")

"Today is " + DateToText(Today())

"Tomorrow is " + DateToText(Today() + 1)

MessageBox("Last nane is " + FieldText(ThisCust(), "Cust_Last_Nanme"))

For a complete list of operators, functions, and other expression elements you can use, refer to the
Expression Elements dialog. This is available anywhere expressions are entered so that you can build
expressions by selecting from a list rather than memorizing functions or typing everything in.

Operator Precedence

As with any programming language, some operators have hight precedence, or priority, than others. This is
the order of precedence, with the highest priority on top:

+ or - unary operator (e.g. numeric prefix like +5, -10)
NOT, !

N

* 1, %

+, -

>= <=

= 1=, <5, 5, <

AND

OR

©CoNok,rwNE

Of course you can use parenthesis around expressions to force priority, like ((23 + 5) * (3-1)) % 3.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 5

Value Types

As hinted at above, there are several different types of values. Expressions are largely "type-safe”, which
means that in most cases you must use the expected type of value or else a parsing error will occur. For
instance if a function requires a numeric value argument, then any other argument type will create an error.
Also most operators must have matching types on each side (see the Syntax Rules).

Numeric values -- Integer or floating point numbers, using digits, a decimal an an optional minus sign in front.
Do not include commas (e.g. 10,000 should be entered as 10000). Scientific notation (e.g 2.3E+9) is not
allowed.

Character/Text values -- Anything enclosed in single or double quotes is considered text. There is no
difference between single-character text an text strings. Quotes of the same type cannot be nested, but
mixed single/double can be nested -- e.g. "He said "Hi"!" is not correct, but 'He said "Hi"!" is correct. If you
must use the same kind of quote in the text, it can be "escaped” with a backslash: "He said \"Hi\"!" will work.
Also, text should not contain any control characters, like the return or linefeed characters. In some special
places where long text is used such as in Forms definitions, the escape sequence "\r" can be used for return,
and "\n" for line feed. Any other control characters can also be entered with hexadecimal escape sequences
like "\x07", but again keep in mind that thee are only of use in certain places like Forms definitions. Text
values can be "added" together (concatenated) using the plus (+) operator.

Boolean values -- Also referred to as yes/no or true/false values. These are represented as the letter T or F
with periods on each side (.T. or .F.). Keep in mind that this is also the way they would be displayed in a
Query, for instance, if used as a raw boolean value. A simple way to convert these to Yes/No text is to use
the iif function: iif(value, "Yes", "No") will return "Yes" if the value is true, "No" if it's false.

Date/time values -- There isn't a specific difference between date and time values -- technically one value
contains both a date and a time. However the context in which it's used will determine whether the date or
time portion is of interest. To enter a raw date in an expression, enclose it in curly-braces: {4/15/06}. A raw
date value will also be shown this way, but you can convert a date to text using DateToText function. Dates
are the one exception to the operator-type-matching rule. Adding a number to a date is an easy way to add
(or subtract) a number of days. For instance, {4/15/06} + 10 = {4/25/06}.

Record values -- This is a special value type, in that records only have an internal representation (they're
essentially an internal pointer), and therefore can be part of an expression as a result of a function or as a
variable. The only valid operators for records are the equal and not-equal conditional operators. One
common operation is to test for a record being "null”, e.g. to see if the ThisSite context is valid. This must be
done using the NullRecord function, like: ThisSite() != NullRecord(). Note that if a raw record value is
displayed, only its record ID will be shown with a "#" prefix (you may see this when testing an expression in
the Expression Creator dialog).

Unknown values -- This isn't really a "type", but you'll see reference to this in some function definitions. For
instance, the Macro function has an unknown return value type because the result type will not be known
until the macro expression is executed. Of course as the creator of the Macro you should know what the
result will be, but the expression parser won't know. This can cause a parsing error if it's in an expression
where a known type is needed, such as an argument to a function or on either side of an operator. In this
case, you'll want to use one of the single-letter type-casting functions to force it to be a known type: N() for
numeric, C() for character, D() for date, etc. -- e.g. N(Macro("MyMacro")) if the macro is known to return a
numeric value.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 6

Expression Syntax Rules
Here are the basic rules for expressions:
e Function names are not case-sensitive (Today = TODAY)

¢ Function names must be immediately followed by the '(* character, with no space after the function
name.

e There is no distinction between integer or floating-point numeric values. Internally they are all treated as
floating-point, though some functions will only use the integer (truncated) portion.

o Parenthesis may be used around expressions to force the operator precedence.

¢ Anything not recognized as an operator, value or a function call is assumed to be a Variable, e.g. in 2 *
R * Pi(), "R" is assumed to be a variable.

e Spaces are not required around operators, values, or variables, but they are allowed (and recommended
for readability).

e Text can be enclosed in single or double quotes (" or '). These can be nested inside each other to one
level, if a function call requires a quoted expression (for instance, the following are OK: Evalq("Evalq(
'Str(5)')") or Evalq("Str(5) + ' thisis a 5." "), but this is not: Evalq("Evalq("Str(5)")")

o If a quote is needed inside a text string, it can be escaped with a backslash: "He said \"Hi\" to me".

o All expression elements have a result "type", e.g. numeric or text, and the result type is determined by
the expression's final result. For instance, 2+2 is numeric, 2>2 is boolean, "2+2" is text. Some types
cannot be mixed, e.g. 2 + "2" is not valid, but numbers and dates can be added or subtracted: {1/1/05} +
30 will add 30 days to the date 1/1/05.

e Any part of an expression not enclosed in quotes is parsed and evaluated, even if the result is not used.
For instance in the expression iif(2>3, 2+2, 2+4), all 3 expressions inside the iif() function are parsed
an evaluated, even though the 2+2 expression is ultimately ignored. This is especially important when
using functions which do things, like SetFieldValue(). You may not want it to "evaluate" all of them.
This is where functions like iifg() come in handy, since the quoted expressions passed to it are just
considered text except for the one that's used as the return value.

e There is no limit to the length of an expression or the levels of nesting, e.g. within function calls or
parenthesis.

e There is a shorthand that can be used for some data field values, if used on the "Operational” record.
For instance: Resv:Resv_Type is equivalent to FieldText(ThisResv(), "Resv_Type"). The shorthand
versions are parsed slightly slower but are executed much faster. The Expression Elements dialog or
Select Fields dialog will insert the shorthand version automatically when possible.

Expression Variables

You can pass information from one portion of an expression to another through variables. However a
variable only exists as long as you're within the same Expression execution cycle where it's created, or at any
level of CallScript, Macro, Eval, etc. executed within that same Expression. So it's unique to that Expression
-- e.¢g. a variable created in a Query's Data expression will not exist for any other expression executed
separately such as the Query's Filter expression (and thus will also not conflict with variables by the same
name in other Expression spaces).

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 7

Variables are created with SetVar() function -- they do not exist in the current expression's execution space
before that. Within the SetVar function the variable name must be given as text, e.g. in quotes, like SetVar
("Index", 1). However when used in an expression, the name is not in quotes -- for instance:
ThisListRec(Index). See the Scripts section for more examples.

Note that a variable used in an expression must exist when an expression is parsed, or else a parsing error
occurs. Note the difference between these two expressions, which both eventually execute the two
expressions contained as arguments:

Eval (SetVar ("lIndex", 1), ThisListRec(lndex))
Eval 'SetVar ("lIndex", 1)', 'ThisListRec(lndex)")

The first expression will result in a parsing error because everything is parsed at once, and the variable
"Index" used in ThisListRec() does not exist until execution time.

However the second expression will work because the arguments to EvalQ are only parsed as text initially.
During execution, the first quoted expression containing SetVar is parsed and executed, creating the
variable, and then the next quoted expression is parsed while the Index variable exists (it's in the same
execution space).

Here are the rules for using variables:

o Variables can be of any type. Once the variable is created, its type is set also (to the type of the
expression used in the SetVar function).

o Variable names must start with a letter and may contain letters or digits. They are not case-sensitive.
o Variables are short-lived, generally only for the current expression or expressions evaluated therein.

e Any variable that exists before a sub-expression is parsed and executed, such as in functions like
CallScript, Macro, IIFQ, EvalQ, etc., is copied into the sub-expression and available therein, and its
value is also copied back out.

o Any variable that does not exist before a sub-expression is parsed and executed but is created within
the sub-expression will be destroyed before sub-expression returns (it's a local variable).

e These rules apply for any depth level of sub-expressions.

Expression Context

Expressions wouldn't be very useful if they operated in a vacuum, without any knowledge of what they're
being used for. For instance on a receipt form, you couldn't use an expression to show the customer's name
unless you know which customer you're printing the receipt for.

Expression "context" solves this problem by giving the expression processor as much information as possible
about what the expression is being used for and what information is already known. This information is
accessible through a number of "context" functions, or "This" functions.

The applicable information varies depending on the situation, but you can use the various "This" functions to
get what's available. For instance in a list query's data expression, you can get the date range being
requested for the query (ThisFromDate and ThisToDate), the base table of the query (ThisTable), and the
specific record of the data line that the expression is being asked to fill (ThisRecord, or in some cases
ThisResv, ThisCust, ThisSite, etc.).

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 8

Note that the ThisRecord function (or is short equivalent, This) is the generic form to get the current record
in context. The record it returns could be any "type" of record, depending on the situation. This may be
appropriate in general cases such as just checking for a valid record, e.g. This() != NullRecord(), or where
there isn't a more specific function available. However in a case where you need a specific record type, such
as a function to get a field from the record, you should use the more specific function like ThisCust or
ThisResv whenever possible. This is especially true in Forms, where a single form may be useful in the
context of Reservations, Customers, or even Sites. Using the specific context function allows you to easily
create a copy of a Customer-based form and change the Base Table to "Reservations” so it can be used for
reservations as well.

Refer to the applicable sections to find out which context variables are available in each situation.

Expression Processing

When an expression is used, there are two stages to its processing: Parsing and Execution. Itisn't strictly
necessary to know about this or understand it, but it can help in some cases to know the difference.

Parsing goes through the expression (which is actually just text to begin with) and converts the elements to
an internal structure that's easy to execute. You might think of this as "compiling” in a language like C++ or
Pascal. The syntax is evaluated for errors, function names are looked up, and it's converted to an operation
tree.

Execution goes through the operation tree, calling any functions to evaluate the elements as needed, and
evaluating the operators until it gets a single result for the expression.

In many cases, these simply happen one after another and it doesn't really matter whether it takes longer to
parse or execute. However, in Queries where the program knows that the same expression is going to be

needed many times (e.g. once for each record used in the report), it only parses the expression once. Then
it does the execution of the expression many times, each time with a different record as the context record.

Sometimes you can use this to your advantage. For instance if you have a complex expression that involves
some iif() conditions, you may not want it to execute both possible expression results in the function. In this
case, it may work best to use the quoted-expression iifq() version. This will delay execution (and parsing) of
the result parameters and only evaluate the one result that's needed.

Expression Errors

Whenever an expression is parsed or executed, error checking is performed. Depending on the function
you're using, you may be able to see any errors encountered.

When using the Expression Creator dialog, you can "Calculate" the expression to check for basic syntax
errors or other problems, to a limited extent.

When using the Save & Test function for Queries, Forms, Scripts, etc., any errors encountered may be
shown as pop-up tips in a query or dialogs, or inside the form where the expression was to appeatr.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 9

Expression Creator Dialog

The Expression Creator dialog is used in many places for entering expressions. It's invoked for "Add
Expression" functions in queries, scripts, etc., and also available anywhere expressions can be edited.

In places where a dialog contains an expression editing field already, or shows an expression as static text, a
button like "Test/Edit Expression” will open the Expression Creator dialog. Besides just a window for editing
the expression, this has a few special functions to assist in creating the expression.

The Expression window acts like most other text entry windows, except that it also does some basic syntax
highlighting. This colors the text according to the type of expression element. This happens dynamically as
you type, as soon as the expression can be parsed into recognizable elements. The meaning of the colors is
as follows:

Black -- Basic elements like math operators, variables and commas

Green -- Boolean operators (AND, OR, NOT)

Dark blue -- Numeric values

Violet -- Boolean values (.T. and .F.)

Dark Red -- Date values (eg. {1/5/2006})

Bright blue -- Recognized function names, once the parenthesis is present, like : Upper(
Magenta -- Text values

Bright Red -- Mis-matched parenthesis, braces or quotes (can't find the matching one)

You can type and edit the expression manually, or you can also use the Insert Expression Element button to
select functions and operators to be pasted into the expression. This will open the Expression Elements
dialog (explained below). If you have anything highlighted in the Expression window, the highlighted text will
be replaced with the element selected (a prompt will warn you that this will happen).

One you have an expression entered, you can test it to a certain extent by clicking the Calculate button. (For
that matter, you can use it as a fancy calculator this way). it will parse and execute the expression if
possible. If there are no errors, the resulting value for the expression will be shown in the Result window. If
there are errors, an Errors window will be added to the bottom and will list all errors encountered. If there are
many errors, you can scroll to see the rest. (Often times one typing mistake will result in many errors as it
continues to try to parse the whole expression.) Note that if the result is a record, the Record ID of the record
will be shown (like "#000000002").

You can edit the expression and use Calculate as many times as you like. Once you're satisfied, click Save
and the entire expression will be saved into whatever function you were editing the expression for.

Note that the Calculate function won't necessarily have all of the context information needed or variables
defined to successfully execute the expression. If a base table is known, then it will use the first record in
that table (e.g. the first reservation) as the operating record. Otherwise, most context information will not be
valid for executing the expression here, which may result in errors even if the expression will work fine in its
proper context.

Expression Timing
When you use Calculate, it will show the approximate time it takes to parse and execute the expression. If

you're programming a complex report, this may help you make it more efficient by modifying the expression
to execute more quickly.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 10

Timing Tip: Most expressions take too little time to measure accurately just one time through. To get a
better idea of the execution time, use the EvalQRepeatWhile function to make it repeat 100 or 1000 times.
Note that the EvalQRepeatWhile function takes a quoted boolean argument and a count, so you need to
modify the expression to be boolean (and always return True). One way to do this is to repeat the expression
twice, once on each side of =, and use half the count. For instance, to measure the execution time of the
expression Upper(‘abc’) 1000 times, enter it like this:

Eval QrRepeat Wi | e("Upper (' abc') = Upper('abc')", 500)

Note that with the EvalQRepeatWhile function, the expression in quotes is only Parsed once. Only the
Execute portion of the processing is done multiple times. For places like queries where speed is important,
execution is the time that's most important anyway.

Expression Elements Dialog

The Expression Elements dialog is used to look up and select elements to insert in expressions. All available
functions, data fields, pick lists, operators and other expression elements can be found here. This dialog is
primarily invoked from the Insert Expression Element button on the Expression Creator dialog, but is also
accessible from similar buttons on dialogs that have an expression editing window built in, such as Edit
Query Column and Edit Macro Definition.

When inserting an expression element, remember that any text selected in the expression editing window will
be replaced with the element you select here. A prompt will warn you of this, so you can go back and un-
select the text if necessary.

There are three lists in the dialog, which are used for looking up an expression element in a hierarchical
fashion.

o First select the general kind of element in the first column, such as Function, Main Table Field, Pick List
Value, Macro, or Operator.

e The other two columns will change depending on what you've chosen -- use the second column to
narrow down your choice more, for instance by Function Type needed, or which Table you need the field
for, or whether you need a Macro or Script, or which Pick List you need a value for.

o Finally, select the element in the third column, for instance the Field Name, Pick List Value, or Operator.

You'll notice when selecting an element that two windows will show information at the bottom. This
information varies slightly depending on what kind of element is selected. Also note that what's actually
inserted in the expression when you click Insert will depend on the kind of element.

Functions

All functions are shown by default (with "<All>" selected in the Function Type list), but you can narrow your
search by selecting the Function Type of interest. Note that some functions will appear in more than one list,
if it fits in more than one category.

The Return type and the Arguments needed for the function are shown in the first line, and a description of
the function is shown below. Note that optional arguments are shown in brackets. These brackets may be
nested -- for instance if it shows nVal [,nVal2 [,nVal3]], that means the function could take one, two, or
three values, and that nVal3 cannot be present without nVal2 also being present. As a general rule,
arguments can never be skipped over -- to include an optional argument later in the list, all previous
arguments must also be included.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 11

When the Insert button is used to select a function for an expression, it inserts the function name and the
required parenthesis, and also the argument list. This reminds you what arguments are needed, and then
you can replace each argument as needed.

Note that the first letter of an argument indicates the type of argument needed (this is similar to what's called
Hungarian notation, though it doesn't follow exactly the same rules as other programming languages).

n = Number

d = Date

¢ = Character, or Text, e.g. in quotes

e = Expression (may have various result types)

r = Record of the database, like a Customer record

You may notice that there are some duplicate functions -- two different function names that do the same
thing. The main reason for this is to provide shortcuts for some functions are used frequently. For instance,
ThisResv() can also be used as Resv(), and ThisRecord() can also be used as simply This().

A description of each function can be seen when the function is selected in the Expression Elements dialog,
so the details are not included in this printed documentation. However you can find the details of all of the
functions listed in the online Help (press the F1 key when you're in the Expression Creator or Expression
Elements dialog, and you'll find a link to the Function Reference near the bottom of the help screen).

Main Table Fields

This shows the five main tables that are most likely to be used, and all fields for the selected table are listed
(only the fields that are enabled). The fields are in alphabetical order by the Field Name (according to Data
Field Definitions).

The field's Description will be shown in the line below the selection lists, and the large window will show the
shortcut field identifier that will be inserted into the expression. This is a 4-letter table abbreviation and the
field ID, separated by colons.

Important: The shortcut field identifier is only valid if the context of the expression will have a "This" field of
the selected table type -- e.qg. if the base table is Reservations, then "Resv" is valid. If the base table is
Customers, then "Resv" is probably not going to work.

All Table Fields

This shows all tables in the database (excluding pick list tables), and all fields for the selected table are listed
(only the fields that are enabled). The fields are in alphabetical order by the Field Name (according to Data
Field Definitions).

The field's Description will be shown in the line below the selection lists. The large window will show what will
be inserted into the expression when Insert is used. This is generally a FieldText function to get the text of
that field, using FindRecByRecID function to get a record of a known Record ID. This is just an example --
many times you can replace TableRecAt with a more appropriate function according to the context (e.g.
ThisListRec). You may also want to use FieldValue instead of FieldText. The important thing is that it gives
you the field name and the table name if needed, so you know how to get that field.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 12

Pick List Fields

This shows all pick lists in the database, and the "fields" available for the pick list selected. The fields are in
alphabetical order by the Field Name (according to Data Field Definitions). Otherwise it works like All Table
Fields above.

Pick List Values

This also shows all pick lists, but instead of showing the fields it shows the Selection Names of all of the
current pick list items. This is generally used if you're creating an expression to compare a pick list field
value to one of the items in the list.

The numeric value will be shown in the first line at the bottom (which is actually the pick list item's record D),
and the pick list text will be shown in quotes below that. The text in quotes will be inserted into the
expression, but you might want to use the numeric value in some cases (it may be faster to compare values
than text, and isn't as likely to change as the text).

Fixed List Values

This works like the Pick List Values, but it shows all of the selection lists in the program that can't be changed
like the Pick Lists. The most commonly used of these are the Reservation Status and Transaction Types.
Macros & Scripts

This allows you to select one of the built-in Macros, or a Macro or Script that you've defined yourself. When
a Macro is selected, the windows below show the description (as defined in the Macro), and the complete
Macro expression. When a Script is selected, only the description is shown.

When one of these is Inserted, it will also include the "Macro()" or "CallScript()" function call with the Macro
or Script name filled in. In the case of a Macro, it will also include place holders for any arguments needed
for the Macro.

Operators

This shows a list of valid operators of the selected type, and will show a description of the selected operator.

Inserting an operator simply inserts the operator, with spaces around it. Spaces aren't usually required, but it
makes the expression easier to read.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 13

Macros

Macros are single expressions that can be called by name from within any other expression, with optional
"replacement"” parameters. They allow re-using common expressions, or simplifying things by calling a
complex expression inside another expression. They basically work the same way as macros in the C
programming language.

Macros Setup

To create a Macro, go to Maintenance / Advanced Customizations / Macros. This opens the Macro Setup
dialog, which lists all current user-defined Macros and allows the typical functions for adding, editing, etc.
Note that while there are functions to Move Up and Move down, their position in the list does not affect any
other functionality -- it's mainly for your own preferences. However if you have many Macros defined, it may
help the speed of your expressions to put the most speed-critical ones nearer the top, since they are
searched in this order when executing expressions.

You can also Export one or more Macros to a text file, or Import Macros. This is primarily for you to import
Macros created by the software provider, though it can also be used to transfer Macros between multiple
databases.

Some sample Macros are included with Campground Master which are actually used by the sample forms.
While these have specific uses for the sample forms, you can also look at them as examples. Click the
Import macros button, and you'll get a typical Windows file dialog labelled "Import Macros”. You need to
locate the samples folder, which is typically in C:\Program Files\Campground Master\Samples (most likely
you just need to double-click the "Samples” folder to get there). Now select the appropriate "Sample Macro”
file, and click Open. Once the sample is imported, you'll see it appear in the list.

Note that the import/export files use the "CSV" file extension (e.g. Sample.csv), which means it's a comma-
separated-value text file. Windows may recognize this file extension as something another program can open
like Excel, but these are in a special format for importing records to Campground Master and should not be
used in other functions. Also avoid opening different kinds of samples which use the same extension (e.g.
don't open a Form sample from an Import Script function).

Be aware that Macros should not have duplicate names (or else it would just use the first one encountered by
that name). If you make a Copy, text will be added to the name to make it unique. If imported Macros have
duplicate names, the imported names are automatically changed to avoid duplication. This might affect the
expressions where the Macros are used, so a warning will be shown and indicate which Macro name(s) were
changed.

Note that Macro names are not case-sensitive. "MyMacro" is the same as "MYmacro".

Editing Macro Definitions

When editing a Macro, a simple Edit Macro dialog is used where you enter the Macro Name (which is used to
invoke the Macro in an expression), the Description (which is shown if the Macro is selected in the
Expression Elements dialog), and the Macro's definition itself. Buttons are available to Insert Expression
Element and Test/Edit Expression, which invoke the corresponding dialogs to help build the Macro
expression.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 14

The Macro definition is just like any other Expression, with one difference. A Macro can have "Replacement
arguments”, and there is a special placeholder format you use in the definition to indicate where these
arguments will go. The format for the placeholder is #n#, where the 'n' is the argument number starting at 1.
So you may have #1# and #2#, indicating the first and second argument to the Macro. Here's an example:

iif(VarExists('#1#'), SetVar (' #1# , #1#+1), SetVar (' #1# ,0))

This Macro takes 1 argument, which in this case is a variable name. The expression increments the variable
by 1, or sets it to O if it did not exist.

Using Macros in Expressions

To invoke a Macro, you use the function Macro(). Using the example above, assuming the Macro's name is
"Inc", and the variable you want to increment is called MyVar:

Macro("Ilnc", "MyVar")

Note that the Macro name and all arguments must be text values. The argument's text that's inside the
guotes, not including the quotes, will be inserted into the text of the Macro's expression, and then the
expression will be executed. So in the above example, the Macro function results in this expression being
parsed and executed:

iif(VarExi sts(' MyVar'), SetVar('MyVar', MyVar+1), SetVar(' Myvar', 0))
There are a few important points to make about arguments for the Macro's expression:

e The Macro's expression, after replacing arguments, is actually parsed during the execution of the
expression containing the Macro() function. This can greatly affect the speed of the parent expression.

e The replacement is strictly a text replacement, so the arguments can be anything -- an expression, a
variable, or even an operator or function name. It can be any length, and could also be the result of
another expression as long as it's a text result.

¢ Since the replacement may be done multiple times as in the example above, be careful what you use.
For instance, don't use an argument that should not be executed more than once. Also keep in mind
that it will need to be parsed many times (avoid huge expressions as arguments).

o Be careful about quotation marks in arguments, like " 'Text' ", if the argument is intended to be a text
expression. While the example here is accurate for a text expression, the macro definition might also
have quotation marks that conflict, creating an invalid expression (e.g. if the argument is enclosed in
other quotation marks).

Macro Return Value

The "value” of the Macro() function will simply be the value of the executed expression, which can be any
value type. If this is used within a more complex expression, you might need to use a type-conversion
function so the parser knows what type it's supposed to return. For instance, if you know the Macro will
return text but the parser gives an error that it's an unknown type, use the "C" function to force it to text form.
For example: Upper(C(Macro("MyName")))

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 15

Macros can be powerful tools when used correctly, but it's best to use them sparingly in places where speed
is important. You could still create the Macros as a handy reference for commonly used expressions, but
then copy the text out of the Macro definition into the expression where it's needed, instead of actually
"calling" the Macro, so it doesn't delay the parsing until execution time.

Scripts

Scripts are mostly a list of multiple expressions for performing more complex calculations, with a couple
extra flow control capabilities built in. Scripts can be called like a function from another expression, so
they're similar to defining functions in C or procedures in Visual Basic or Pascal.

If you just need to do simple iterations like adding up transaction amounts, or just need to execute a couple
separate expressions at the same time, then you can probably do it without a Script by using the "Flow"
functions like LoopSum() or Eval(). For more complex tasks, though, a Script will allow more flexibility and
will also result in a little "program” that's easier to read and modify than a large expression.

In many cases, a Script might also be more efficient because its flow control allows skipping the parsing &
execution of expressions that aren't used. So even though you could probably do the same thing with
carefully nested IIF and Loop functions, they might not be as fast.

Scripts Setup

To create a Script, go to Maintenance / Advanced Customizations / Scripts. This opens the Scripts Setup
dialog, which lists all current Scripts and has the typical functions for adding, editing, etc. Note that while
there are functions to Move Up and Move Down, a Script's position in the list does not affect any other
functionality -- it's mainly for your own preferences. However if you have many Scripts defined, it may help
the speed of your expressions a tiny bit to put the most speed-critical ones nearer the top, since they are
searched in this order.

You can also Export one or more Scripts to a text file, or Import Scripts. This is primarily for you to import
Scripts created by the software provider, though it can also be used to transfer Scripts between multiple
databases.

Some sample Scripts are included with Campground Master which are used by the sample forms. While
these have specific uses for the sample forms, you can also look at them as examples. Click the Import
scripts button, and you'll get a typical Windows file dialog labelled "Import Scripts”. You need to locate the
samples folder, which is typically in C:\Program Files\Campground Master\Samples (most likely you just
need to double-click the "Samples" folder to get there). Now select the appropriate "Sample Script” file, and
click Open. Once the sample is imported, you'll see it appear in the list.

Note that the import/export files use the "CSV" file extension (e.g. Sample.csv), which means it's a comma-
separated-value text file. Windows may recognize this file extension as something another program can open
like Excel, but these are in a special format for importing records to Campground Master and should not be
used in other functions. Also avoid opening different kinds of samples which use the same extension (e.g.
don't open a Form sample from an Import Script function).

Be aware that Scripts should not have duplicate names (or else the CallScript function would just use the
first one encountered by that name). If you make a Copy, text like "(copy 1)" will be added to the name to
make it unique. If imported Scripts have duplicate names, the imported names are automatically changed to
avoid duplication. This might affect the expressions where the Scripts are used, so a warning will be shown
and indicate which Scripts name(s) were changed.

Script names are not case-sensitive, so "My Script" will appear to be the same as "my script".

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 16

Editing Script Definitions

When editing a Script, an Edit Script dialog is shown with each line of the script (each line being a single
expression), and also a place to enter the Script Name (which is used to invoke the Script in an expression),
and the Description (which is shown if the Script is selected in the Expression Elements dialog).

Creating a Script is simply a matter of adding one line (expression) after another, just like writing a program.
Of course you can Insert lines, move and copy lines, etc. as needed. Each time you Add, Insert, or Edit an
expression line, the Expression Creator dialog is used. Thus you can test-calculate each line, look up
functions, etc. like anywhere else.

Adding Multiple Lines

One special function available for editing Scripts is Add Multiple Lines. This opens a plain multi-line text
window where you can enter as many lines as you want, all at once. This is usually faster than entering them
separately if you don't need to look up functions, etc. through the Expression Creator. More importantly, it
lets you copy/paste the lines from somewhere else, e.g. if you prefer using a different editor for
programming. Just make sure that each expression has a "line feed" or "return" after it (long expressions will
wrap but should not have the line feeds in them). Once you've entered or pasted what you want, click Save.
Each line will be added as a separate line in the Script.

Save & Test Script Results

This function simply uses the Expression Creator dialog, with a CallScript function already inserted to call the
script you're working on. Press Calculate to execute the script to check for errors. Of course, like any other
expression, it won't necessarily have all of the context information needed or variables defined to

successfully execute the script, but you may be able to catch some of the basic problems with the script
format, like mis-matched IF/ELSE/ENDIF sets or WHILE/ENDWHILE pairs.

Using Scripts in Expressions

To invoke a Script, you use the function CallScript(). Note that the only argument is the script name itself (in
guotes of course, since it's a text argument).

Call Script("MScript")
Note: Script names are not case-sensitive. "MyScript" is the same as "MYscript".

There are no optional arguments available to be passed into the Script. If you need information passed into
the Script, you can use variables (see below).

Scripts can be called within other Scripts -- even the same Script can be called recursively.

Script Return Value

Each Script has a single return value, just like any other expression (technically this becomes the return
value of the CallScript function). To return a value from a script, simply make sure that value is the result of
the last line of the script. Remember that script lines are just expressions executed one after another. So
the "value" of the last line of the script will be the returned value -- often times this is simply a variable name,
if the Script sets the variable to the desired value.

The return type can be any type of value. Note that if the Script is used within a more complex expression,

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 17

you might need to use a type-conversion function so the parser knows what type it's expected to return. For
instance, if you know the Script will return a number but the parser gives an error that it's an unknown or mis-
matched type, use the "N" function to force it to text form. For example: N(Script("JanReceipts")) + N(
Script("FebReceipts")).

Script Variables

It was mentioned before that you can pass information into a Script using variables. You can also pass
information out of a Script through variables, for instance if you need more than just the single return value.
Here are the rules for using variables for Scripts:

o Variables are created with SetVar() function -- they do not exist in the current expression's execution
space before that.

o Variables exist as long as you're within the same Expression execution cycle where they're created, or at
any level of CallScript, Macro, Eval, etc. executed within that same Expression. They are unique to that
Expression -- e.g. a variable created in a Query's Data expression will not exist for any other expression
executed separately such as the Query's Filter expression (and thus will also not conflict with variables
by the same name in other Expression spaces).

e Any variable that exists before the Script is invoked with CallScript is copied into the Script, and its
value is also copied back out (it's a global variable, which can be changed inside the Script).

e Any variable that does not exist before the CallScript but is created within the Script is destroyed before
CallScript returns (it's a local variable). It will exist for the life of the Script, since each Expression line
is parsed and executed within the same execution space.

e These rules apply for any depth level of script calling -- e.g. every CallScript creates a new level of
variable scope, with any existing variables copied into it and back out of it.

Script Flow Control

There are two directives available for flow control -- IF and WHILE. Script lines starting with these are
specially handled (pre-parsed), not just executed as an expression. Any text following the IF or WHILE
directive (separated by a space) is parsed and executed as an expression, and must have a boolean result
value. The result of course determines whether the lines following the IF or WHILE are executed.

Both of these directives must be followed in the Script by a line containing ENDIF or ENDWHILE,
respectively. In the case of IF, you can also have an ELSE directive before the ENDIF. There is not an
ENDELSE -- the ENDIF is used to terminate both the original IF prior to the ELSE directive.

These may be nested to any level, but each directive set must be properly nested. Any directive set that's
not properly nested will result in an error.

These directives are not case-sensitive (e.g. "if* or "If* may be used), but we suggest using upper-case for
ease of script readability. See the examples below.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 18

Indentation & Spacing

Leading spaces in front of any text in line are ignored, so you can put spaces in front of any expression
(including comments and flow control directives). We recommend indenting each level of IF or WHILE
nesting by at least 3 spaces to improve readability. You can also insert blank lines to separate sections. The
excerpts below show a couple examples of nesting and the use of flow control directives, and comments in
scripts.

Set Var ("nResv", NunmTran(ThisResv()))
Set Var ("bFound", .F.)
Setvar("r", 1)
; Verify that this reservation contains this transaction
WHI LE r <= nResv AND ! bFound

I F ResvTran(r) = ThisTran()

Set Var ("bFound", .T.)

ENDI F

Setvar("r", r+l)
ENDWHI LE

IF CCNum I'= ""
REM al ways need at least 2 lines
Set Var (" nLi nes", 2)

I F C(Macro("TranCCAut h", "ThisTran()")) = "Y"
Set Var (" nLi nes", nLi nes+1)
ENDI F

/1 Need nore lines if a signature i s shown
I F SettingLocal Bool ("Print", "PrintShowCCSigLine")
Set Var (" nLi nes", nLi nes+7)
ELSE
Set Var (" nLi nes", nLi nes+2)
ENDI F
ENDI F

Script Comments

It's a good idea to include comments in a complex Script, so you can understand it later. Any "expression”
line starting with a double-backslash ("//") or a semicolon (";") is considered a comment. You can also use
"REM " like in Basic (there must be a space after "rem", but it doesn't have to be upper-case). Don't worry
that you're using the same Expression Creator to ener comments -- just enter the text the way you want it as
if it's an expression. A comment cannot be on the same line as an expression.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 19

Function Reference

Function Types

In the Expression Elements Dialog where you can browse for functions and select the from a list, the
functions are divided into several categories. This is simply to help narrow down your search -- there isn't
necessarily a difference in the way each category is used. You'll also notice that some functions appear in
more than one list, e.g. if their function involves more than one category.

Each category, or type, is briefly described below. The details of each function are not included in this
printed documentation, but you can find the details in the online Help (press the F1 key when you're in the
Expression Creator or Expression Elements dialog, and you'll find a link to the Function Reference near the
bottom of the help screen).

Context (This...)

These functions are special in that the access values related to where the function is used. See the previous
Expression Context section for more details.

Conversion

These functions are used to convert one type of value to another (e.g. numeric to text, text to date, etc.)

Database

These functions are used access any kind of database information (but not change it). In addition to
accessing raw data fields, etc., many functions are included to get commonly needed information, for
instance the current operator or the total amount due for a reservation.

Database Modification

These functions are used to modify the database. Naturally these should be used with care, since
modifications cannot be simply undone, and anything modified through functions is likely to be done without
the user knowing it has happened.

Date & Time

These functions are related to getting the date or time, or manipulating date or time values.

Financial

These functions are related to financial operations, such as properly rounding or formatting amounts for your
currency.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 20

Flow

These functions allow you to conditionally execute other functions, thus they can be used to affect the "flow"
of the expression.

General & System

These functions give you access to general information about Campground Master, or things outside of
Campground Master such as Windows functions and files.

Inspection

These functions are used to "inspect" or "test" the results of an expression, generally for use in conjunction
with Flow type functions.

Math
This function category includes anything related to basic mathematical operations.
Settings

These functions access or change program settings. While the settings are actually contained within the
database, these functions are separated for convenience in looking them up.

Text

This category includes any functions related to manipulating text value types, for instance to extract parts of
a text string.

User Interaction

Functions that involve some kind of interaction with the user are included in this category, such as showing
message prompts or opening a particular user-interface dialog like Reservation Details.

User-defined Dialogs

All of these functions are specifically for use in Dialogs definitions, to access or manipulate the controls on a
dialog (and to open a user-defined dialog).

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 21

Color Schemes

A Color Scheme is a set of rules used to determine the color of an item in a grid or an indicator on the map
view. It can define the specific conditions for any number of foreground / background color combinations.

There are several places where color schemes are used. Primarily they're used for the color of data in Query
columns, but they can also be used for special coloration of the heading rows or columns of Queries or on
the standard tab views like the Rack. A color scheme can be used to add custom color combinations to the
standard colors used on the Rack (and other tab views where a reservation name is shown), or on the Map.

Color Scheme Setup

To create a Color Scheme, go to Maintenance / Advanced Customizations / Color Schemes. This opens the
Color Schemes Setup dialog, which lists all current schemes and has the typical functions for adding, editing,
etc. Note that while there are functions to Move Up and Move Down, a scheme's position in the list does not
affect any other functionality except for the order they will appear in selection lists -- it's mainly for your own
preferences.

You can also Export one or more schemes to a text file, or Import schemes. This is primarily for you to
import Color Schemes created by the software provider, though it can also be used to transfer schemes
between multiple databases.

Some sample Color Schemes are included with Campground Master, which you can use or learn from (some
may also be used in sample Queries). Click the Import schemes button, and you'll get a typical Windows file
dialog labelled "Import Color Schemes". You need to locate the samples folder, which is typically in
C:\Program Files\Campground Master\Samples (most likely you just need to double-click the "Samples"
folder to get there). Now select the appropriate "Sample Color Scheme" file, and click Open. Once the
sample is imported, you'll see it appear in the list.

Note that the import/export files use the "CSV" file extension (e.g. Sample.csv), which means it's a comma-
separated-value text file. Windows may recognize this file extension as something another program can open
like Excel, but these are in a special format for importing records to Campground Master and should not be
used in other functions. Also avoid opening different kinds of samples which use the same extension (e.g.
don't open a Form sample from an Import Script function).

Color Scheme Names

Note that Color Schemes cannot have duplicate names. If you make a Copy, text will be added to the name
to make it unique. Color Scheme names are not case-sensitive.

Also note that even though Color Schemes are usually selected by name, for instance when defining a
Query, the record link to the scheme is used to reference it internally. Thus you can change the names of
schemes already in use without affecting any function that uses the scheme. However this also means that a
scheme that's already in use (linked from a Query) cannot be deleted.

Editing Color Schemes
To edit a Color Scheme, use the Add or Edit functions in the Color Scheme Setup dialog. Other functions
where schemes are referenced, such as the Global Color Schemes function, have buttons to directly edit the

scheme without leaving that function and going through Color Scheme Setup.

When editing a scheme, an Edit Color Scheme dialog is shown with each Color Rule of the scheme (each
rule being a single expression and the colors represented), along with a place to enter the Color Scheme

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 22

Name, and an optional Default Scheme.

Creating a Color Scheme is simply a matter of adding Color Rules. Of course you can Insert rules, move
and copy rules, etc. as needed. When a rule is Added or Edited, the Edit Color Scheme Rule dialog will be
used to enter the details.

Editing Color Rules

The Edit Color Scheme Rule dialog is invoked from Edit Color Scheme, when adding or editing rules.

Here you enter a Name for the rule, select the foreground and background colors to be used, and enter an
Conditional Expression which defines when the rule is to be used. You can type the expression directly in the
dialog here, or use Insert Expression Element to select and insert elements as needed. You can also use
Test/Edit Expression to open the Expression Creator dialog. The Expression Creator has basically the same
functions as the Color Rule dialog, but it also has the Calculate function for testing the expression.

Note that the Name should be as descriptive as possible, explaining what that color rule specifies. If this
Color Scheme is used as a Global Default Scheme for reservations or maps, then the name of each rule will
be shown in the Color Key list.

You'll notice that each rule has both a foreground and a background color. You can't just define a rule for the
foreground, e.g. to make any unpaid reservation have red text. You must define rules for every possible
combination of colors (at least any that won't be covered by the scheme's "Default scheme”).

How Color Schemes Work

When a color scheme is used for a data element, the program executes the Condition Expression for each
Color Rule in sequence. If the expression results in a True (.T.) value, then the color combination selected
for that rule is used. No further rules are processed for that data element. If the expression results in a False
(.F.) value, then it continues checking the following color rules until a True value is found.

If none of the rules result in a True value, then it checks for a Default scheme. If a Default scheme is defined
for the Color Scheme, then that will be used to determine the data color. If not, then the program will
probably use whatever default is normally used for the data (e.g. as if no color scheme was specified). If you
want to specify your own default color so that it never uses the program's default, then add a rule to the end
with just ".T." (without the quotes) as the Condition Expression. That will force the last color to be used
(since the condition is always True), if none of the previous colors apply.

Functions for Color Scheme Expressions

The context is important in most color schemes, since that's usually the basis for the color rules. For
instance, if the scheme is to be used for coloring Reservations, then the ThisResv() context function will be
heavily used in the scheme's rules. The context functions ThisCust(), ThisSite() and ThisPark() would also
be available. If it's a scheme to be used in a Transactions query, then ThisTran() is also available.

The date can also be important for color schemes, e.g. to show on the Rack whether it's paid up to the given
date (and scheduled Period if applicable). The context functions ThisDate() and ThisPeriod() are used to
get the specific Rack column date other date of interest, for instance the "as-of" date on Payments Due.

In some cases, such as the data color schemes for Cross-table Queries, other context functions are available
to get the appropriate information such as ThisValue() or ThisGroupText(). See that section for more
details.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 23

There are also some special functions that can be useful in color schemes. Remember that each rule needs
to check for a precise condition for the color combination of interest, and yet those conditions should be
unique enough not to use the color for the wrong things. For instance if you want to define a special color for
Hourly reservations, you need to do much more than just check the Reservation Type field. You would
probably want several color rules like there are for other types, to indicate different status for hourlies like
pending, confirmed, guaranteed, checked in, etc. You should also make sure these colors don't accidentally
apply to special cases like conflicting, cancelled, checked out, etc.

So you can see that the expression for a rule might need to check quite a few things, which not only takes
your time to create the expressions for but also slows down the processing of the rules. Therefore some
shortcut functions have been added to get a value for the "default” color status that would otherwise be used
for Reservations (ColorStatusResv), Map sites (ColorStatusMapSite) or Rack sites (ColorStatusSite).
These return a numeric value based on one of the color-status values in the default color keys, which you
can use in a Color Rule expression to determine what color would normally be used.

To get the values returned for each function , go into the Insert Expression Elements dialog, select "Fixed
List Values", and select either "Site Status (color default)" or "Map Status (color default)". When a status is
selected in the last column, its numeric value will be shown in the box below.

So now you can create a rule that overrides a normal color with an expression that compares the normal
status and your specific condition, rather that an expression that has to check several different things. For
example to override the "Resv., Pending, Don't Move, Paid" color for normal reservations to be a different
color for hourlies would normally require checking at least 5 different fields for the precise condition, but you
can do it with this expression:

Col or Stat usSite(Resv(), ThisDate(), ThisPeriod()) = 37
AND ResvBaseType(Resv()) = "Hourly"

Note that the expression above is shown on two lines for clarity -- the expression itself should not be broken
into two lines, but of course it may wrap automatically in the dialog's edit box.

For site-based color schemes for instance on the Rack (particularly if used for a Default Global Color
Scheme), use ColorStatusSite. This will return one of the "Site Status" colors for the reservation(s) on the
site if applicable, or the open site, for the given date and period. For a color scheme that's to be used only
on a Reservation-based Query, you can use ColorStatusResv to get the status of a reservation as of a
particular date (which may affect paid/not-paid, etc.).

If you create a color scheme to be use as the default on the Map view, use ColorStatusMapSite so that it
handles the special map coloring for the site (and also provide the date arguments for the map range, which
will be available in the context functions ThisFromDate and ThisToDate). If you're trying to color the open
sites according to an attribute, for instance, be sure to have the expression check that the site would normally
be shown "open" for the map as well as for the attribute. For instance to have a color rule that highlights 50
Amp sites in a different color, use the expression:

Col or St at usMapSite(Site(), FronDate(), ToDate()) = 1 AND Canpsites:Attrib_50A

Note that a Color Scheme to be use for the Map's Default Global Color Scheme does not need to have a
"Default scheme” -- it's assumed to use the Map's normal colors by default.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 24

Default Global Color Schemes

This function is accessed through Maintenance / Advanced Customizations / Select Global Color Schemes.
Here you can select a custom color scheme to be used by default for Reservation coloring, Map indicator
coloring, open sites on the Rack or the various Rack heading rows and columns.

While this isn't the normal place to set up Color Schemes, you can use the Edit Scheme buttons to edit any
selected scheme or to create a new one (if no scheme is currently selected).

Note that the color scheme selected here for the Reservations override will be used on the Rack (for sites
occupied by a reservation) as well as on the other tab views where the customer's name is shown. It will also
be used on the Map view if the "Use reservation color coding” option is selected there. In other words, it's
used anywhere that a reservation is typically shown in a color to indicate its status. Any color scheme used
for this should have "Reservations” selected as the Default scheme. In addition, the Color Key function will
include the colors from the scheme, and also allows editing the colors (or the entire scheme) directly from the
Color Key dialog.

The Rack headings color scheme selections can be used to override the normal static heading colors on the
Rack. This can be used for instance to show the Site names or Types in different colors depending on their
status, Park, or any attribute. Any scheme for site headings or open sites will use the context function
ThisSite available, which can be used in the expressions to get the appropriate site information.

You could use a color scheme on the date headings to highlight certain days of the week, holidays, or any
special situation. A special color scheme can also be used for any open sites on the Rack, for similar
reasons or to indicate something about the site. There is a special context function, This Date, which
indicates the date of the cell or heading of interest in these schemes. Here's a simple example of an
expression which can be used in a Color Rule to change the color of the header for Saturday and Sunday:

DoW Thi sDate()) = 7 OR DoW ThisDate()) = 1

Note that the default color scheme selections are also global in that they affect all workstations.

Queries

Overview

Queries are at the core of most reporting functionality. At the most basic level, a Query is defined as a data
filter and a number of data extraction (field selection and formatting) specifications. In Campground Master,
a query is typically represented by a grid with data in it.

Any of the Tab views (except the Map view of course), and just about every report or grid view available in
Campground Master could be considered a Query even though they're built-in functions. Although these are
programmed internally for the benefit of speed, you could reproduce any of them using the Query definition
functionality. In some cases you may want to do just that, with minor modifications to suit your own specific
needs. However if it's one of the Tab views you want to modify, there's no need to recreate the whole Query
-- just create a Query with the special information columns you need to add on to the standard columns
available, and select that Query as an Add-on Query in the Tab's Option function.

When any Queries are defined, you may also have a Query Tab view. Here you can select any query to be
shown on the Tab, and optionally select start and end dates for filtering and possibly enter search text to use
in the filtering (making it a kind of "Find" function).

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 25

Query Types
There are two general types of Query in Campground Master -- List Queries and Cross-Table Queries.

A List Query is like the Arrivals Tab View -- it's a list of records (specified by a filter definition) and a number
of Query Column definitions which specify what fields or calculated information to show for each record. The
column definitions can include custom formatting and color coding by Color Schemes (including the
headings), and custom sorting rules. You can also select an expression to be shown for a pop-up tip (when
the mouse is held over a cell), as well as a double-click action. This makes them interactive, and thus more
useful than just a static report.

A Cross-Table Query is like a Transaction summary report or the Rack view -- it's also generated from a list
of records, but instead of showing a record in each column it shows calculated information in a cross-table,
where the records used for the calculation of each cell of the table are filtered by two additional conditions --
one for rows and one for columns. You can specify nearly any kind of grouping you want for both the rows
and the columns, making it easy to cross-correlate information in various combinations. This allows for much
more creativity than just showing information by date.

Queries Setup

To create a Query, go to Maintenance / Advanced Customizations / Queries. This opens the Queries Setup
dialog, which lists all current Queries and has the typical functions for adding, editing, etc. Note that while
there are functions to Move Up and Move Down, a Query's position in the list does not affect any functionality
other than its order in drop-down selection lists. This of course may be important to you for organizational
purposes.

You can also Export one or more Queries to a text file, or Import Queries. This is primarily for you to import
Forms created by the software provider, though it can also be used to transfer Forms between multiple
databases. Note that the Export and Import functions will also Export or Import any Color Schemes used in
the Query definition.

Queries cannot have duplicate names (or else they could not be uniquely selected from a list). If you make a
Copy, text like "(copy 1)" will be added to the name to make it unique. Of course you can change this to
something more appropriate. Duplicate checking for the names is not case-sensitive ("My Query" is
considered the same as "my query").

When you Add or Insert a query, you will first be asked what kind of Query you want. This is because the
editing of each type is quite different. Once you select the type, it will continue to an editing dialog for that
type -- either for a List Query or a Cross-Table Query.

Importing Sample Queries

Several sample Queries are included with Campground Master which you can use as reports, learn from, or
modify as needed. To use these samples, you must first Import them. Click the Import queries button, and
you'll get a typical Windows file dialog labelled "Import Queries”. You need to locate the samples folder,
which is typically C:\Program Files\Campground Master\Samples (most likely you just need to double-click
the "Samples" folder to get there). Now select the appropriate file, for instance "Sample Query - Rent Roll"
to get a Rent Roll example, and Open.

Note that the import/export files use the "CSV" file extension (e.g. Sample.csv), which means it's a comma-
separated-value text file. Windows may recognize this file extension as something another program can open
like Excel, but these are in a special format for importing records to Campground Master and should not be
used in other functions. Also avoid opening different kinds of samples which use the same extension (e.g.
don't open a Form sample from an Import Script function).

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 26

When you're importing sample Queries, it may also import Macros or Scripts that are used in the Query. If
these are already defined, resulting in a duplicate name, then a warning will be shown listing the duplicates
and what their names were changed to during the import. These might be safe to delete, assuming the
imported version does the same thing as the original version. Otherwise you will need to change any
expressions in the Queries that use the Macro or Script so that it uses the correct name.

Once the sample is imported, you'll see it appear in the Queries list. You can Edit the Query to make any
changes you need.

Editing List Queries

The Edit List Query Definition dialog is shown when adding or editing list queries from Queries Setup. Other
functions where Queries are referenced, such as the Queries Tab view, may also have a button to directly
Edit the Query without leaving that function and going through Queries Setup.

Here you can edit all of the components of a List Query. There are a few fields you can edit directly, a
couple of buttons for editing the list of Default Sorting and Filter Conditions for the Query, and the main
portion of the dialog for editing the "meat” of the Query -- the Query Columns. The order of the columns is
also defined here, by their order in the list, which can be adjusted easily with the Move Up and Move Down
buttons.

Query Name

The name should be descriptive enough for selecting the Query out of a drop-down selection list. Queries
will usually be shown in the order they appear in Queries Setup, not alphabetical, so the name doesn't affect
the order. Each Query must have a unique name (which is not case-sensitive).

Base Table

The base table determines the primary data table of the Query -- that is, which records are potentially going
to be included in the Query. For instance, if the base table is Reservations, then the Query will include all
Reservation records by default, subject to the Filtering Conditions.

Selecting the base table is important, but it's not always an obvious choice. For instance, lets say you want a
list of outstanding balances. If you choose "Customers” as the base table, then you could easily show
customer balances but it wouldn't be as easy to show reservation information (site or in/out dates, for
instance), and the balance might not represent a current reservation. If you choose "Reservations” as the
base table then you can show each reservation with a balance, and any related information, and it would
show multiple lines for the same customer if they have more than one site reserved (e.g. linked
reservations).

Also keep in mind that the base table affects which context functions are available for Query expressions. If
"Customers" is the base table, then only ThisCust is useful (because a Customer record doesn't necessarily
have a unique reservation). If "Reservations" is the base table, then you can use ThisResv, ThisCust,
ThisSite, and ThisPark, because all of that information is known for each reservation.

Another function of the base table selection is to determine where a Query is appropriate. For instance,
Query must have a base table of Reservations to be added to tab views like Arrivals, Departures, etc., and a
base table of Transactions to be added to the Transactions tab view. It must have a base table of Sites to be
added to the Rack sites headings.

Any table in the database may be selected, but only a few are useful for most situations -- Reservations,
Customers, Transactions, and Sites.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 27

Note that if you're creating a Query to use with the date headers of the Rack, then the base table does not
matter since no record information is used. However for testing reasons, we suggest using Parks just
because the Save & Test function will try to show all records of the selected base table, and the Parks table
usually only has a few records.

Access Level

The access level simply determines which operator access level is required to view the Query. If the current
operator does not have the selected access level, then the Query will not be shown in the selection list on the
Queries Tab view, for instance.

Exclude from Lists

When this is checked, the Query will not be shown in any selection lists such as in the Queries Tab view.
Note that this does not actually disable the Query -- e.g. if it was already selected as an add-on for a tab view
then it will still be used in that function. However it won't be available as a general selection, which can be
handy for keeping special-purpose Queries out of view. Of course this also means that you would need to
uncheck this again (temporarily at least) if you ever did need to select the Query somewhere. Another
alternative would be to set the Access Level for such Queries to Administrator, assuming that most operators
are non-administrator.

Note that one place that Exclude from Lists does not affect is the Tab Views Setup (since this is assumed to
be an administrator-only function anyway).

Default Sorting Hierarchy

The default sorting hierarchy is used as the lowest-order sorting when any column is sorted in the query, if
the specific column sorting results in equal values.

For instance, if a Transactions-based query is sorted by Site, you may have a lot of records with the same
Site. The normal Site column sorting would consider these equal, so the order of those records of the same
site could be random. However if you've specified a default sorting hierarchy, then it would be used to
further sort those records of the same site -- in the case of Transactions, we suggest using a default hierarchy
that includes the Date, Time, and Record ID fields of the transactions, in that order.

Filtering Conditions

The filtering conditions determine which records of the Base Table are included in the Query. Without any
filtering conditions, ALL records are included (which in some cases is what you want, e.g. to include all Sites).
Refer to the Filter Conditions section below for more details.

Important: If this query is selected as add-on for another Tab View (e.g. Arrivals), then any filtering conditions
defined here are also used to determine which records are shown. Only records that pass the filtering here
and the tab view's normal filtering will be shown.

Includes Text Filter
When this option is checked, the user will have the option to enter search text. You should include a filter

condition that checks this text against the appropriate field, e.g. a customer name, site number, confirmation
number, etc. This allows you to create any type of "Find" query you can think of.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 28

Query Columns

This grid simply shows the "columns" of the Query (although the end use may not be columns, such as when
used as a date header add-on Query for the Rack). The order of the entries here determines the order of the
columns when the Query is used. While only the column heading name and expression is shown here, there
is actually much more information in a column definition. Each column is actually a separate Query Column
record, linked to the Query.

Typical functions are available for adding, inserting, copying, moving, and deleting columns. When adding
or editing a column (double-click on a column also edits it), the Edit Query Column dialog is used to enter or
edit the information for that column.

Quick-Add Fields

This is a special function for quickly adding simple data fields to a query. It displays a dialog where you can
select one or more fields to be shown in the Query. You can choose fields from any table that will be
appropriate, e.g. any table that will be available in the context of the query.

To add a field, just double-click the field name in the left column (or select the field and click the "-->"
button). To remove a field, double-click it in the right-hand column, or select it and click the "<--" button. If
you don't add them in the right order, don't worry about it here -- you can fix the order once you're done and
get back to the Edit List Query dialog (using the Move functions).

For each field added, a Query Column record is created and added to the Query. The various details of the
column, such as the heading, expression, justification, formatting, summing and sorting details are all set up
with appropriate defaults. If these aren't quite what you want, you can edit the columns added, just like any

other column.

Save & Test Query Results

This function invokes the Save & Test dialog, which shows the Query in a grid. This can be used to test the
query, without completely exiting the Edit function. Be aware that it does completely save any changes
you've made to the Query, so it negates any possibility of cancelling changes you've made.

Notes

You can enter any notes for yourself here, or use this as a description of the Query -- they're only seen here
and in the list in Queries Setup.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 29

Editing Query Columns

The Edit Query Column Definition dialog is only shown when you Add, Insert or Edit a column from the Edit
List Query dialog. Here you can change any of the details of the query column.

Field / Expression

This expression defines the content of this column for each record of the query. You can enter the
expression directly in this editing window, or use one of the helper functions above it. Buttons are available
to Insert Expression Element and Test/Edit Expression, which invoke the corresponding dialogs to help build
the expression. There's also an Insert Field button, which invokes the Select Data Field dialog. Here you
can simply select a table and data field, and the expression and other formatting information will be
automatically filled in with some appropriate defaults.

Column Heading

This will be the name of the column and the text in the heading. This field can't be blank, but it's OK to have
duplicate names if you really want to. Keep in mind that the columns will auto-size to fit the widest thing in
them, whether it's the heading or the data. So if the data is typically short, like a number, then you'll probably
want to keep the heading short too.

Custom Colors for Column Heading

If this option is checked, you can select custom text and background colors for the heading. This isn't
commonly used, but you might want to use it to highlight a column for some reason. An "Example” box will
show the current colors, and the "Text" and "Background" buttons are used to pick the desired colors.

Data Color Scheme

If you want to use something other than the default Windows colors for the data in the column, then you need
to use a Color Scheme. Appropriate context will be available in the color scheme, such as the record being
shown and the from/to dates selected for the Query. Thus you can create a color scheme that colors the
data according to content or anything else about the record being shown.

If you haven't created the color scheme you need yet, or if you find that adjustments to the color scheme are
needed, then you can use the Edit button next to the color scheme selection list.

Tip: If you just want to use the normal Reservation color coding like the other tab views do, then create a
Color Scheme that has "Reservations" as the Default scheme. No rules need to be added to the scheme.
Show Group Totals

If this box is checked, then the "totals" will be calculated for the column and shown at the bottom. If there are

blank lines inserted in the query due to sorting groups (see "Blank lines..." below), then sub-totals will also be
inserted in those blank lines.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 30

The calculations for the totals shown can be a Sum, Average, or Count. Sum is obviously just the sum total,
Average will divide the total by the number of records involved, and Count will simply show the number of
records.

Tip: To get a total number of records at the bottom like you see on most tab views, check this box for the
first query column and select "Count” as the totalling method.

Format

This determines the format of numeric values, assuming the expression results in a number. For non-
numeric data, the "General" option should be chosen. For numeric data, select an appropriate format, e.g.
Currency, Integer, Percent, or Floating Point. If none of these quite fits your needs, then you can select
Custom Format and enter an expression to format the data any way you need to.

Note that technically you could format the data in the Field/Expression itself, for instance by using
"Currency(Tran:Tran_Amount)" instead of just "Tran:Tran_Amount". However this would not allow the values
to be totalled since the expression no longer results in a numeric value.

The Format specification also determines the format of the total and sub-totals, if the Show Group Totals
option is selected.

Custom Format Expression

This field only appears when the Format selected above is "Custom Format". To edit the format, click the
Edit button or simply click on the text box below it. This invokes the dialog to edit the format expression.

For the most part, the format expression should simply convert a numeric value to text. The numeric value
to be formatted will be available with the context function ThisValue, which will already be shown in the
expression the first time you edit it. There are several functions available for formatting numeric values. For
a simple example, lets say that we want to take the number an show it as a currency value rounded to the
nearest dollar. The expression entered would be:

Currency(Round(ThisValue(), 0))

Technically you can do anything you want in the format expression -- the context will also have the record of
interest and the from/to dates of the query. So the format could even include other fields of the record.

Remember that the format only affects the way that the number is displayed, not the way it's sorted or
totalled, which is why you would do the formatting here instead of in the main Field/Expression for the
column.

Align Text & Heading

Select the desired alignment, or justification, of the data (text) and the column heading. Typically the
heading is always centered, but there may be cases where you want it left or right justified.

Sort this column by default

When you want a specific column in the Query sorted when it's initially displayed, check this box for the

column to be sorted. If no columns have this checked, then it will be sorted by the first column. You can
also select the direction of the sorting, ascending (lowest on top, highest on the bottom), or descending.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 31

Only one column in the Query should have this option checked (if more than one column does have it
checked, the first column found will be sorted).

This does not affect the method used to sort the records -- it will be the same as if the column header is
clicked to sort the column.

Blank lines between sorted groups

If this box is checked, and if the query is sorted by this column, then blank (non-record) lines will be inserted
between any different values. This is similar to the Transactions detail view, where blank lines are inserted
when it's sorted by date, type, category, etc. Only one blank line can be inserted between each different
value, no matter how different they are.

Note: When deciding whether the values are different, only the result of the Field/Expression for the column
is used. If a special sorting hierarchy is defined for this column, or a default sorting hierarchy for the Query is
defined, it may affect the order of records within a "group" but it will not cause extra blank lines to be
inserted.

When blank lines are inserted, any columns with the Show Group Totals option will also have sub-totals
inserted in the blank line.

Pop-up Tip Expression

If you want something to appear in a pop-up hint whenever the mouse cursor is placed over this column, then
you can enter an expression here. To edit the tip expression, click the Edit button or simply click on the text
box below it. This invokes the Expression Creator dialog to edit the tip expression.

The result of the expression should be a text string to be displayed. Typical context will be available for the
record underneath the cursor, so the expression can use fields from the record being shown, or any other
information.

Note that the pop-up tip can only be a single line, so be careful about its length.

Double-Click Action Expression

This can be used to make something happen when this column is double-clicked on. To edit the expression,
click the Edit button or simply click on the text box below it. This invokes the Expression Creator dialog to
edit the expression.

This expression could be anything from showing a message box with information about the record to
executing a Script performing all kinds of functions, even changing the values of fields. For instance, you
might have a "Clean" flag defined for Sites, and make double-click change the flag back and forth between
"Yes" and "No". Just be careful about doing things that can't be easily undone, since a double-click might be
accidental.

Special Sorting Value/Hierarchy

This allows you to change the way this particular column is sorted, for instance when the header is clicked on
to sort it. This is a list of expressions used for sorting, the same way the Query's Default Sorting Hierarchy
works, but is only used when this column is sorted rather than for all columns. Any current sorting
expressions are shown in a list. To edit the sorting expressions, click the Edit Special Sorting

Value/Hierarchy button.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 32

By default, the column will sort based on the result of the main Field/Expression -- so that result is compared
directly for each record, whether it's a numeric, text, date, or boolean value. If this doesn't result in a
reasonable sorting, then enter special sorting expressions to sort the way you want. If any sorting
expressions are entered here, the Field/Expression for the column will not be used at all for sorting.

The most common value needing special sorting is the Site name or abbreviation. Sorting by the text of the
site name will rarely result in the order you want. In this case, you actually want to sort by their record order,
that is the order they have been set up in the Sites data table. Therefore you would use this expression for
sorting a Site column:

SiteOrder(Site())

Another common issue is upper-case and lower-case values, since "Smith", "SMITH" and "smith" would all
be considered different when compared directly. For this you would want to convert them to all upper-case
and sort that way so they're all considered the same, without actually changing the data shown in the column.
This would be done using the Upper() function -- see an example in the next section, Sorting Hierarchies.

Sorting Hierarchies

The Edit Sorting Hierarchy dialog is used to enter one or more expressions to determine a sorting order of
records, for instance in Queries. Each expression is shown in a grid, with the typical functions to Add, Edit,
Copy, Delete and Move the expressions.

Since the expressions are used in the order shown here, the order of expressions in the list determines the
sorting hierarchy. In other words, the first expression is the most important and is compared first, and if that
still results in equal values then it will compare using the next expression, etc.

There will be appropriate context information for each expression, since the expressions are used to compare
specific records or other specific information to be sorted. The exact nature of the context will depend on
where the sorting hierarchy is used, but for instance if it's the default sorting hierarchy in a Query with a base
table of Customers, then the context function ThisCust will be available (or the generic version,
ThisRecord, can also be used).

When sorting is done, it actually executes each expression twice (once with the context of each record to be
compared), and then compares the results. Therefore the expressions can result in any type of value -- text,
numeric, date, etc. -- the program will know how to compare them. You don't have to actually do the
comparison in the expression, just make the expression be the values to be compared.

Lets say we have a Query with the Reservations base table. To have a default sorting of customers by last
name, and then secondarily sort by first name if the last names are the same, and a third level of sorting by
the number of nights in the reservation (if the same customer), the sorting expressions would be:

Upper (Cust: Cust _Last_Nane)
Upper (Cust: Cust_First_Nanes)
Resv N ghts(Thi sResv())

Note that we used the Upper() function on the names so that it doesn't matter whether the names are upper
or lower case (or mixed-case). Also note that the shorthand field descriptor is used (e.qg.
Cust:Cust_Last_Name) instead of a function like FieldText(ThisCust(), "Cust_Last_Name"). The shorthand
should generally be used everywhere possible, since it does more work during parsing and less during
execution

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 33

Filter Conditions

The Edit Filter Conditions dialog is used to enter one or more filtering expressions for Queries. Each
expression is shown in a grid, with the typical functions to Add, Edit, Copy, Delete and Move the expressions.
Since the expressions are used in the order shown here, this can be a speed consideration but otherwise is
not an issue (see below).

Filtering conditions determine which records of a Query's Base Table are included in the Query. Without any
filtering conditions, ALL records are included (which in some cases is what you want, e.g. to include all Sites).

Each filter condition is an expression that results in a boolean value (True or False). It's important to
remember that all of the conditions must be "met", or "True", for a given record to be included in the Query.
When filtering a record for the Query, each expression is executed in the order specified, until a False
condition is found. If no condition returns False, then the record passes the test and it's included in the
Query. If a False is found, it stops executing filter expressions (to save time) and the record is not included.

The most common elements of the filter conditions are the context functions for the data range that the user
selects for the Query (e.g. the From and To dates on most Tab views). For instance, in a Reservation Query
you can include only Reservations that exist in the date range with the following filter condition:

Resv: Resv_Last _Date >= FromDate() AND Resv: Resv_First_Date <= ToDate()

This is just like the On Site view date filtering. By changing the Last or First date fields, you can change it to
include reservations arriving or departing on the selected dates. Similar filtering would be done for
Transactions using the Tran:Tran_Date field descriptor.

Other common filter conditions would be for including only active reservations (using the ResvisActive
function), including only checked-in reservations (using the Resv:Resv_Status field descriptor), or including
only reservations on a site (using the expression Site() != NullRecord()).

Text Search Conditions

If the Query includes a Text filter, then you need to include a condition for that. The text to be searched
(entered by the user with the F9 key or Search button) is available in the context function ThisSearchText.
Here's an example filter expression to look up transactions that include the entered text in their receipt
number:

Thi sSearchText () !'="" AND Fi nd(Tran: Tran_l nvoi ce, Thi sSearchText()) != 0

Note that the expression above also checks for the search text being blank, so that if no text is entered then
it will result in False -- no records will pass the test. That keeps the Query from showing all records until
search text is entered (which could be rather slow if this is the only condition).

Speed Considerations

Note that any number of filter condition expressions can be used. Technically, you could include all filter
conditions in one expression (using "AND" logic), but this can actually result in a slower query because it has
to execute every part of the expression. If the filtering is broken up into multiple expressions, then it only
executes the expressions until a False condition is found and then it can skip the rest.

If speed is a significant issue, you can rearrange the conditions to put the most likely "False" conditions at the
top (so less expressions are executed for most records). Or if some expressions are more complicated than
others, you can put the "faster" expressions at the top and leave any really slow ones for last, which would
only executed if the record passes all other "quick" tests.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 34

Also note that all filter expressions are pre-parsed -- that is, the parsing portion of the expression processing
is done only once each time the Query is refreshed, so it doesn't have to be done every time the expressions
are used to filter a record.

Filter Expression Errors

It's important to know that if a filter expression results in an error, then the record is considered to have
passed the test (the same as the condition resulting in True). The reason for this is that it's easier to locate
the problem if it shows too many records than if it shows none at all.

Save & Test Query

This function is invoked from the Edit dialogs for either List Queries or Cross-Table Queries. This dialog may
also be shown for a particular Query through the ShowQuery Expression function. It simply shows the
Query in a grid, with From and To date selections like the Queries Tab View would. If the Query has a text
filter, you can also enter the text to filter. This allows quickly testing the query to see what it will look like,
without completely exiting the Edit function.

Note: Be aware that clicking Save & Test from an Edit Query dialog does completely save any changes
you've made to the Query, so it negates any possibility of cancelling changes you've made.

When you use the Save & Test function from an Edit Query dialog, any errors in the expressions of the query
will be shown here as pop-up tips on the cells (when you put the mouse over the cell). Sometimes an error
will mean that a cell appears blank when it should otherwise have data, so try holding the mouse over any
blank cells to see if there's an error message. Note that errors also appear this way when the Query is shown
elsewhere also, but only if you're logged in as an Administrator.

This dialog simulates the Queries Tab View in nearly all respects, including the right-click menu functions
and double-click actions.

Editing Cross-Table Queries

The Edit Cross-Table Query Definition dialog is shown when adding or editing cross-table queries from
Queries Setup. Other functions where Queries are referenced, such as the Queries Tab view, may also have
a button to directly Edit the Query without leaving that function and going through Queries Setup.

Here you can edit all of the components of the Query. The top portion has a few basic fields you can edit
directly and buttons for editing the Filter Conditions for the Query and Testing the Query. Next is a grid for
editing the "Axis/Grouping" definitions, and the main portion of the dialog for editing the "meat" of the Query -
- the Data Expression and various formatting/action information.

Query Name
The name should be descriptive enough for selecting the Query out of a drop-down selection list. Queries

will usually be shown in the order they appear in Queries Setup, not alphabetical, so the name doesn't affect
the order. Each Query must have a unique name (which is not case-sensitive).

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 35

Base Table

The base table determines the primary data table of the Query -- that is, which records are potentially going
to be included in the Query. For instance, if the base table is Reservations, then the Query will include all
Reservation records by default, subject to the Filtering Conditions.

Any table in the database may be selected, but only a few are useful for most situations -- Reservations,
Customers, Transactions, and Sites.

For more details about base table selection, refer to Editing List Queries in a previous section.

Save & Test Query Results

This function invokes the Save & Test dialog, which shows the Query in a grid. This can be used to test the
query, without completely exiting the Edit function. Be aware that it does completely save any changes
you've made to the Query, so it negates any possibility of cancelling changes you've made.

Access Level

The access level simply determines which operator access level is required to view the Query. If the current
operator does not have the selected access level, then the Query will not be shown in the selection list on the
Queries Tab view, for instance.

Exclude from Lists

When this is checked, the Query will not be shown in any selection lists such as in the Queries Tab view.
Note that this does not actually disable the Query -- e.g. if it was already selected as an add-on for a tab view
then it will still be used in that function. However it won't be available as a general selection, which can be
handy for keeping special-purpose Queries out of view. Of course this also means that you would need to
uncheck this again (temporarily at least) if you ever did need to select the Query somewhere. Another
alternative would be to set the Access Level for such Queries to Administrator, assuming that most operators
are non-administrator.

Note that one place this does not affect is the Tab Views Setup (since this is assumed to be an administrator-
only function anyway).

Filtering Conditions

The filtering conditions determine which records of the Base Table are included in the Query. Without any
filtering conditions, ALL records are included. Refer to the Filter Conditions section above for more details.

Includes Text Filter

When this option is checked, the user will have the option to enter search text. You should include a filter
condition that checks this text against the appropriate field, e.g. a customer name, site number, confirmation
number, etc. While not necessarily useful for most cross-table queries, you can use it as a free-form filter,
e.g. to show the results for only a certain operator, or only a certain reservation type (assuming you have the
Filter Conditions set up accordingly).

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 36

Axis/Grouping Definitions

The Axis/Grouping definitions determine what kind of cross-correlation the query is going to show. These are
shown in a grid, and the Add/Edit/Delete buttons to the left are used to modify them as needed. Note that the
order of these in the grid does not matter. Currently there must be exactly two axis definitions, one for rows
and one for columns, although the grid is designed to hold more than two (for future expansion, e.g. to allow
sub-totalled cross-tables).

The most common combination of groupings uses one axis for dates (e.g. daily or monthly totals) and
another for some other grouping of interest (e.g. transaction categories, reservation types, site types, etc.)
This equates to the "Group by" and "Summ by" selections in transaction summary reports and most statistical
reports available in the Reports menu. However it's also possible to make both groupings non-date, e.g. to
cross-correlate reservation type with discount type, or how-heard with rig type (use your imagination!).

For more details, refer to Cross-Table Axis/Groupings.

Calculated Data Expression

This defines the "meat" of the Query. To edit the expression, click the Edit button or simply click on the text
box below it. This invokes the Expression Creator dialog to edit the data expression.

After all of the cross-axis grouping is done to figure out what records are to be used to calculate each cell of
the Query, the Data Expression is executed for each cell (each row and column combination). Obviously you
need a way to get the list of records in the cell, and a way to do calculations from those records. The context
functions ThisListCount and ThisListRec are used to access the records for each cell. Most cross-table
Queries will involve summing up something about the records, so here's a simple example to add up the
amount of Transactions for each cell (assuming the base table is Transactions):

LoopSun(1, ThisListCount(), "#i#", 'TranBal Amount(ThisListRec(#i#))')

The expression above simply sums up the transaction amounts for each record in the list (ThisListRec) from
1 to the number of records in the list (ThisListCount).

There may be cases where you don't need to do anything with the records in the list, just show how many are
in the list (included in the group), like in an Arrivals Statistics report. In that case the data expression can
simply be ThisListCount(), which returns the number of records in the grouping.

While the expression's results don't need to be numeric, keep in mind that if you plan to show any kind of
totals for the rows or columns then it must be numeric.

Data Color Scheme

If you want to use something other than the default Windows colors for the data in the grid, then you need to
use a Color Scheme. Appropriate context will be available in the color scheme, such as the list of records
being shown for the cell and the from/to dates selected for the Query. Thus you can create a color scheme
that colors the data according to content or anything else about the record being shown. There are other
context functions available specifically for cross-tables, which usually start with "ThisGroup”. For instance,
ThisGroupText will contain the heading text of the cell's group, and ThisGroupFromDate will contain the
starting date for the cell.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 37

The most common use for this in Cross-table Queries is to show negative values in red. This can be done
easily using the ThisValue context function to get the value being shown in the cell. For example, create a
Color Scheme with this expression for rule with red text:

Thi sValue() <0

If you haven't created the color scheme you need yet, or if you find that adjustments to the color scheme are
needed, then you can use the Edit button next to the color scheme selection list.

Format

This determines the format of all numeric values in the Query, assuming the Data Expression results in a
number. For non-numeric data, the "General" option should be chosen. For numeric data, select an
appropriate format, e.g. Currency, Integer, Percent, or Floating Point. If none of these quite fits your needs,
then you can select Custom Format and enter an expression to format the data any way you need to.

The Format specification also determines the format of the row and column totals, if they are used in the
Query.

Custom Format Expression

This field only appears when the Format selected above is "Custom Format". To edit the format, click the

Edit button or simply click on the text box below it. This invokes the Expression Creator dialog to edit the
format expression.

For the most part, the format expression should simply convert a numeric value to text. The numeric value
to be formatted will be available with the context function ThisValue, which will already be shown in the
expression the first time you edit it. There are several functions available for formatting numeric values. For
a simple example, lets say that we want to take the number an show it as a currency value rounded to the
nearest dollar. The expression entered would be:

Currency(Round(ThisValue(), 0))

Align Text

Select the desired alignment, or justification, of the data in the query grid (including any totals shown).

Pop-up Tip Expression

If you want something to appear in a pop-up hint whenever the mouse cursor is placed over a cell, then you
can enter an expression here. To edit the tip expression, click the Edit button (or simply click on the text box
below it). This invokes the Expression Creator dialog to edit the tip expression.

The result of the expression should be a text string to be displayed. Typical context will be available for the
cell underneath the cursor, so the expression can use the value in the cell, group information, or fields from
the list of records being shown.

Note that the pop-up tip can only be a single line, so be careful about its length.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 38

Double-Click Action Expression

This can be used to make something happen when a cell is double-clicked on. To edit the expression, click
the Edit button or simply click on the text box below it. This invokes the Expression Creator dialog to edit the
expression.

This expression could be anything from showing a message box with information about the cell's contents to
executing a Script performing all kinds of functions, even changing the values of fields. Just be careful about
doing things that can't be easily undone, since a double-click might be accidental.

Notes

You can enter any notes for yourself here, or use this as a description of the Query -- they're only seen here
and in the list in Queries Setup.

Cross-Table Axis/Groupings

The Edit Cross-Table Query Axis/Grouping Definition dialog is only shown when you Add or Edit an
axis/grouping from the Edit Cross-Table Query dialog. Here you can define the grouping criteria for a row or
column of the Query.

The term "Axis" comes from mathematical X/Y graphing, were one axis is horizontal and one is vertical (in
this case, rows and columns of values in a grid). From here on, we'll just refer to them as "Groupings", since
in the context of this dialog you're really defining how the records are grouped to form rows or columns.

A Cross-table Query must have a Row grouping and a Column grouping, creating a cross-table grid of values
where each cell in the grid results from records that meet both the row and column condition for that cell. For
instance, lets say you have a Reservation-based cross table, with the column grouping being months and the
row grouping being Reservation Type. So for each month you'll have a column, and for each Reservation
type you'll have a row, and each cross-table cell contains the records meeting the month and type conditions
for that column and row.

Note that whenever we refer to "base table records" or "all records" here, this is of course subject to the Filter
Conditions of the Query itself.

So with that in mind, remember that this dialog only defines one of the two groupings at a time, either the
rows or the columns. You'll be adding each of the groupings from the Edit Cross-Table Query dialog.
AXis name

This is just a name for your reference, which will be displayed on the Edit Cross-Table Query dialog. Keep it
simple but relevant, like "Dates" or "Types".

Axis Type

This is either "Rows" or "Columns", whichever this grouping defines. Later versions may allow other options
for sub-groupings.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 39

Grouping Type

There are several types of default groupings available, which mostly just help you define the conditions of the
guery more easily than raw expressions alone, but also may affect what context information is available for
the group's expressions.

Each type of grouping requires different information to define it, as described below.

None (single result) -- If you only want a single row or column, without any grouping.

Dates -- Group by date, e.g. daily, monthly, etc.

Records of a Table -- Create a group for each record in a selected table, e.g. each Site.

Items of a Pick List -- Create a group for each item in a selected Pick List, e.g. each Site Type.

Items of a Fixed List -- Create a group for each item in a selected Fixed List, e.g. each Transaction

Type.

o Expression, Filtered or All -- Create groups with headings according to an expression you define (see
below for details).

e Custom Groupings only -- Don't create any default groups, but use the ones you defined.

When a grouping type is selected, you'll see two things happen -- Other fields may appear for entering the
details, and a default Group Conditional Expression is supplied to help you get started (which in some cases
is already exactly what you need).

Date Grouping

If the "Dates" grouping type is selected, you can select a Date Grouping of Daily, Monthly, Quarterly or
Yearly. The date grouping of course defines what groups are created (limited to the From and To date range
in effect for the Query), and the date range that will be included in each group. When any date grouping is
used, the context functions ThisGroupFromDate and ThisGroupToDate can be used to get the date range
included in the group, in any of the group expressions.

You can optionally provide a Group Headings Conditional Expression. This expression will be executed for
each date range being considered as a group, so that you can filter which groups in the overall date range
will be included in the report (for instance you could use this to only include certain days of the week). The
context functions ThisGroupFromDate and ThisGroupToDate will be available for this conditional
expression.

Note that no matter what date grouping type is used, the From and To dates selected for the query will limit
the actual groups created (and will most likely limit the records included in the query, since they're most likely
being filtered by date in the Query's Filter Conditions.) Thus a Monthly column grouping will show a month
for each column, but the data contained in the column may still only include one day.

Table & Heading Field

When "Records of a table" grouping is selected, you need to select the Table to be used and the Heading
Field to be used for the group headings (row or column headings). For instance you might select the "Sites"
table and the "Site Name" for the heading field so it shows the site names. A group will be created for each
record of the selected table, regardless of any filtering -- every record of the table considered a group even if
none of the Base Table records are related to it (e.g. even if a Site is inactive or has no reservations, it would
be included). The default sorting of the records is the actual record order in the table.

The context function ThisGroupRec will be available to get the group's record (e.g. the Site for this row) in
the group expressions, and ThisGroupText can be used to get the fields text (the group heading).

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 40

Pick List or Fixed List

When the "Items of a Pick List" or "ltems of a Fixed List" grouping type is selected, you need to select the list
to be used. A group will be created for each pick list or fixed list item (subject to the optional conditional
expression as described below). For fixed lists, the headings will be the common item selection text. For
Pick Lists, the Selection name field of the pick list items will be used. The default sorting of the groups is the
order of items in the pick list or fixed list. The context function ThisGroupText can be used to get the list
item's text (the group heading).

Group Headings Conditional Expression (for Date, Record, Pick List and Fixed List groupings)

This optional expression allows you to filter which groups are actually included in the report. For instance in
a Records of a Table grouping, a group would normally be included for every record (e.g. every Site). By
specifying a conditional expression here, you can limit the report to only show certain records (e.g. filter out
by site type, park, etc.).

This expression is executed for each potential grouping, e.g. each record, date group, or list item. As with
any Conditional expression, it should have a boolean (True/False) result -- if the result is True, then the group
(record or item) will be included. The context available depends on the grouping type -- for Records of a
Table use ThisRecord(), for Items of a Pick List or Items of a Fixed List use ThisGroupText(), and for Date
groupings use ThisGroupFromDate and ThisGroupToDate.

Group Headings Expression (for "Expression" grouping types)

When "Expression, Filtered" or "Expression, All" is selected for the grouping type, you also need to enter a
Group Headings Expression. This expression will be executed for each record of the Query's base table
(ThisRecord will have the record context) and must have a text result type (within this expression. Each
unique text result created will be used as a group definition, the result text being used for the actual row or
column headings. The context function ThisGroupText can be used to get the expression's text (the group
heading). By default these headings are sorted in the order that the unique values are found (e.g. no sorting
is done).

If "Expression, Filtered" is selected then only records that pass the Query's Filter Conditions will be used to
determine the groups (i.e. the Group Headings expression is only executed in the context of those filtered
records, and only those results will be used as groups). If "Expression, All" is used, then the filtering is
ignored and all records of the base table are used.

A common use of this type of grouping is to group transactions by Operator, since the Operator field of
transactions is just a text field. if the "Expressions, Filtered" grouping type is used, then you would expect
the report to only include operators involved in at least one transaction in the date range of the report. If the
"Expressions, All" grouping type is used, then the report will include all operators who were ever involved in a
transaction, even if they didn't have any for the transactions in the Query's date range. Either way, the
Group Headings Expression in this example would simply be Tran:Tran_Oper, which returns the operator
name for the transaction. Of course this assumes that the base table for the Query is "Transactions".

Show totals for each group

If this box is checked, then the "totals" will be calculated for the column or row and shown at the bottom or
side. If the Axis Type is "Columns", this determines whether totals are shown at the bottom (totalling each
column). Likewise, if the Axis Type is "Rows" then this option will show totals on the right-hand side, totalling
each row.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 41

The calculations for the totals shown can be a Sum, Average, or Count. Sum is obviously just the sum total,
Average will divide the total by the number of records involved, and Count will simply show the number of
records.

Align headings text

This is simply the text justification used for the headings. Usually "Center" is best for columns and "Left" for
rows.

Group headings color scheme

If you want to use something other than the default Windows heading colors, then you need to use a Color
Scheme. Appropriate context will be available in the color scheme for the grouping (as described above), in
addition to ThisListCount and ThisListRec for access to all records included in each group. Thus you can
create a color scheme that colors the data according to group's heading, record or date information, or
anything about the records being shown (e.g. the color could be based on how many records are included in
the group or even the total transactions amount).

If you haven't created the color scheme you need yet, or if you find that adjustments to the color scheme are
needed, then you can use the Edit button next to the color scheme selection list.

Group Conditional Expression

This is the most important aspect of the grouping -- The Group Conditional Expression determines which
records (from the Query's Base Table) are to be included in each group. The expression is executed for
every record to be included in the Query (subject to the Filter Conditions for the Query), with the context of
each group (the row or column grouping information, from context functions as described above). The
expression must return a boolean value -- True if the record should be included in the group and False if it
should not.

Note that the expression is executed for every grouping expression (for each record) to see if it's included in
the group, not just until it finds a True result -- thus it's possible that a record might be included in more than
one group, or even all groups. This is normally not desired, but it's certainly possible with the appropriate
expressions.

When the Grouping Type is selected, a basic default expression appropriate for that grouping is entered here
automatically. In some cases where it can't determine what needs to be used, it will include text like "<fill in
field name>". You just need to edit the expression and insert the appropriate field name. Of course these
are just basic assumptions, and may not be what you need, but it's intended to provide a hint of what's
needed in the expression.

Group Heading Sorting Hierarchy

If the order of the groups is not what you want by default, then you can use one or more expressions to
determine the group order in the rows or columns. The context of the group is available for the sorting
expressions as described above (e.g. the heading text, record or date information). To edit the sorting
hierarchy, click the "Edit group heading sorting hierarchy" button above the list.

Note that this sorting is only done for the "default” groupings as defined by the Grouping Type. It does not
affect any Custom group Definitions -- all custom groupings will appear after the sorted default groupings.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 42

Context for Expressions

The context functions available for each grouping type are detailed below. These context functions are
available to any expression executed for a particular cell in the cross-table:

e The Group Conditional Expression
ThisRecord() / ThisResv() / etc. for the record being testing for inclusion in the group
ThisGroupRec() if it's by table,
ThisGroupText() if it's a records of a table, pick list, fixed list, or expression
ThisGroupFromDate() / ThisGroupToDate() specify the group's range for a date grouping

The Group Heading Sorting Hierarchy expressions
ThisGroupRec() if it's by table,
ThisGroupText() if it's records of a table, pick list, fixed list, or expression
ThisGroupToDate & ThisGroupFromDate if it's grouped by dates

The Group headings Color Scheme
ThisListCount() & ThisListRec(n) of the records
ThisGroupRec() if it's by table
ThisGroupText() if it's a table, pick list, fixed list, or expression
ThisGroupToDate & ThisGroupFromDate if it's grouped by dates

The Calculated Data expression (in the Edit Cross-Table Query dialog)
ThisListCount() & ThisListRec(n) of the records
ThisGroupRec(), ThisGroupText() for the non-date axis
ThisGroupFromDate() & ThisGroupToDate() for the date axis

The Data Color Scheme (in the Edit Cross-Table Query dialoq)
ThisListCount() & ThisListRec(n) of the records
ThisValue() & ThisTextValue() for the body results & totals
ThisGroupRec(), ThisGroupText() for the non-date axis
ThisGroupFromDate() & ThisGroupToDate() for the date axis

The Pop-up Tip expression (in the Edit Cross-Table Query dialoq)
ThisListCount() & ThisListRec(n) of the records
ThisGroupRec(), ThisGroupText() for the non-date axis
ThisGroupFromDate() & ThisGroupToDate() for the date axis

The Double-Click Action expression (in the Edit Cross-Table Query dialog)
ThisListCount() & ThisListRec(n) of the records
ThisGroupRec(), ThisGroupText() for the non-date axis
ThisGroupFromDate() & ThisGroupToDate() for the date axis

Note that there's only one set of context functions for date groups and one for non-date groups (text or
record). This assumes that one grouping will be by date and the other will be something else. If you have a
cross-table where both groupings are by date or both groupings are non-date, then the context functions will
only contain information for one of the groupings (either rows or columns). It's somewhat random which
grouping's information is available in this case and it could change in future versions, so it's best not to
depend on it being either one.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 43

Cross-Table Custom Groupings

The Edit Custom Grouping Definition dialog is invoked from the Add or Edit Custom Group button in the Edit
Cross-Table Axis/Groupings dialog. This dialog has a Group Heading field (the row or column heading text)
and a large window to edit the Grouping Expression. It also has buttons to Insert Elements and Test/Edit the
expression, which work like the Expression Creator dialog.

You can add any number of custom group definitions to a cross-table grouping definition. Each one is simply
a column heading and an expression. A list of any already defined is shown on the Cross-Table Query
editing dialog with the typical buttons for adding, editing, moving, copying and deleting them. The order of
the definitions in the list determines the order in the Query, and any defined as custom groups will appear
"after" any default groups as defined by the Grouping Type -- e.g. they will be the bottom-most rows or the
right-most columns (not including Totals). Of course if "Custom Groups only" is selected as the grouping
type, then only these custom groups will be shown in the Query.

A typical use of custom groups is to include a "(nhone)" group when the normal grouping is by Sites, How
Heard, Discount, etc. where there might be records with no value for this information. For instance to include
a no-site grouping, add a custom grouping with the expression Site() = NullRecord(). They also allow
adding special columns to transaction reports like Previous and All-Time, or create any type of special
groupings you can come up with, providing complete flexibility in the creation of summary reports.

The custom group expressions should have a boolean result, just like the Group Conditional Expressions --
that is, the expression should return True if the record should be included in the custom group, and False if
not. Each custom group expression is executed for each record in the Query's base table, just like the Group
Conditional Expressions. However the only context information available besides the general query
information is the base table record (ThisRecord) and the custom group's heading text.

Forms

Overview

The Forms functionality in Campground Master encompasses nearly all types of printable formats that aren't
grid types of reports. All customer receipts, envelopes, mailing labels, window tags, purchase orders and
even E-mail message formats are part of the Forms definitions. Note that we define Forms only as printable
output formats, not as user input formats the way "Forms" are defined in Microsoft Excel or Visual Basic. We
refer to input forms as Dialogs, which are set up in a separate section.

Previous versions of Campground Master had a set of receipts, etc. available as "canned" or pre-
programmed formats with a few formatting or content options. These are all still available as a pre-
configured set of default Forms, so that upgrading will be seamless and new installations have a base set of
common formats to start with. These use the same internal code to ensure that no change will be noticed in
most cases (there are a few enhancements, such as multi-page receipt support, which affect the "old" receipt
formats). All of the previous settings from Printing Options, Notice text, etc. are still used and they still affect
these default formats (and in some cases will affect customized versions of these as well).

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 44

The Forms Setup functionality adds several levels of customizability not previously available (each "level" of
customization below requires more technical knowledge):

1. Any of the default receipts can be disabled, renamed, or rearranged in the selection lists to suit your
preferences.

2. Form elements such as text, data or graphics can be added on top of existing "canned" receipt
formats.

3. A format can be modified more extensively by importing custom Form templates, which replicate the
canned Forms in most respects, and making changes to them.

4. Completely custom Forms can be created from templates or from scratch.

Any modifications other than the first level above will require at least some knowledge of Expressions, and a
fair amount of programming expertise is recommended for the 3rd and 4th levels.

In addition, a special "Section" feature allows creation of multiple-page Forms with different information on
each page. For instance you could create a single 4-page "receipt” format which includes 2 copies of the
Ticket Form (one requiring a signature for your records), a Window Tag, and a letter explaining all of your
policies (however all sections in a single Form must go to the same printer).

Forms Setup

To create a Form, go to Maintenance / Advanced Customizations / Forms. This opens the Forms Setup
dialog, which lists all current Forms and has the typical functions for Adding, Inserting, Editing, etc. Note that
while there are functions to Move Up and Move Down, a Form's position in the list does not affect any
functionality other than its order in drop-down Form selection lists that the user sees. This of course may be
important to you for organizational purposes.

You can also Export one or more Forms to a text file, or Import Forms. This is primarily for you to import
Forms created by the software provider, though it can also be used to transfer Forms between multiple
databases.

Forms cannot have duplicate names (or else they could not be uniquely selected from a list). If you make a
Copy of a Form, text like "(copy 1)" will be added to the name to make sure it's unique. Of course you can
change this to be more appropriate. Duplicate checking for the names is not case-sensitive ("My Form" is
considered the same as "my form").

Add the default receipts

This special function will add all of the default receipts to the list (plus other Forms like envelopes and
labels). The main purpose of this is in case you make some changes and then want to get back the original
settings. Note that it will only add defaults that do not already exist, according to the Form names, since
duplicate names are not allowed. Thus if you make changes to a default that you want to undo, you need to
delete the original first before adding the defaults. A "fresh" copy of any deleted will then be added to the
end.

Renaming Forms

If you want to change the name of a Form (for the selection lists), then select the Form in the list and click
Edit Form definition. The Edit Form dialog will show the current Form name at the top. Just change the
name as needed and Save it.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 45

Rearranging Forms

The order in which the Forms appear in selection lists, for instance in the Transactions dialog, is determined
by the order that they appear here in Forms Setup. If you want to move them around, for instance to make
the most-used Forms appear at the top (or nearer to the default Form selected in Printing Options), then use
the Move Up and Move Down buttons to move one or more selected Forms.

Disabling Forms or changing access levels

If you don't want so many Forms in the receipt selection lists, you can disable the ones you don't use.
Technically you could also Delete them, but it's better to just disable them in case you want to use them later.
To disable a Form, select it in the list and click Edit Form definition. Then in the Edit Form dialog, uncheck
the "Enabled” box and then click Save.

Changing the access level for a Form is basically done the same way -- go into Edit Form Definition, and
select the desired Access Level.

Changing the number of transactions printed on a page

The space available for transactions on the receipts can vary depending on the number of "Additional sites"
(linked reservations) or Receipt #'s (separate transaction sessions), as well as other factors like including
credit card information. Each Form is set up with a specific maximum number of transactions that it can print
per page (it's not "intelligent” enough to figure that out automatically for each receipt), but this may be too
many in some cases, or perhaps you find that it can fit more. To adjust this, select the Form in the list and
click Edit Form definition. Then in the Edit Form dialog, change the "Trans rows/page” value and then click
Save.

Adding elements to the default formats

Each of the default format entries is set up as an "Add-on" Form, essentially as a blank custom Form on top
of the corresponding canned default Form. This means that it still uses internal code to create the receipt
Form, instead of using custom Form elements, so that all Forms still work the way they did in previous
versions. These "canned" Forms are also a little more flexible than a custom Form could be, and also faster.

However since they are still Form definitions, you can add Form Elements to them. Anything you add will be
printed "on top" of the Form selected in the "Add-on" field. Thus you can add a logo image, some extra text,
or data fields to otherwise blank areas of a Form. (Technically you could overwrite existing Form
information, but this is very tricky.) To do this, just select the Form and Edit it, and add Form Elements as
required. Just keep in mind that the position of fields on most canned Forms isn't fixed -- much of the
information will move around depending on what information is actually needed for the given reservation or
customer.

Making other changes to the default formats -- Importing and changing templates

As mentioned above, the default formats are just Add-ons to the canned Forms, which don't allow changes to
the Form other than additional elements. If you need to make changes to the Form, such as moving,
renaming or deleting elements, or adding things to it that won't have a fixed position, then you need to be
able to edit the actual Form elements. This isn't possible with the canned Forms, so we've created sample
templates that duplicate the canned formats as close as possible. There are a few aspects that aren't quite
possible to duplicate (or were too difficult to be worthwhile), but for most users this won't be a problem.

To use these templates, you must first Import them. Click the Import Form(s) button, and you'll get a typical
Windows file dialog labelled "Import Forms". You need to locate the sample Forms folder, which is typically

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 46

C:\Program Files\Campground Master\Samples (most likely you just need to double-click the "Samples"
folder to get there). Now select the appropriate file, for instance "Sample Form - Ticket Form" to get the
Ticket Form template, and Open.

Note that the import/export files use the "CSV" file extension (e.g. Sample.csv), which means it's a comma-
separated-value text file. Windows may recognize this file extension as something another program can open
like Excel, but these are in a special format for importing records to Campground Master and should not be
used in other functions. Also avoid opening different kinds of samples which use the same extension (e.g.
don't open a Form sample from an Import Script function).

When you're importing sample Forms, it may also import Macros or Scripts that are used in the Forms. If
these are already defined, resulting in a duplicate name, then a warning will be shown listing the duplicates
and what their names were changed to during the import. These might be safe to delete, assuming the
imported version does the same thing as the original version. Otherwise you will need to change any
expressions in the Forms that use the Macro or Script so that it uses the correct name.

Once the sample is imported, you'll see it appear in the Forms list (probably with a name starting with
"Custom”. You'll probably want to move it to the top of the list for easier location. Now you just need to Edit
the Form to make any changes you need. You'll notice that the sample Forms make heavy use of Regions
to sub-divide the Form's data areas. This is recommended so that you can do things like export/import
regions, move entire areas easily, and "name" regions for easy reference when editing.

Note that these sample templates do contain the entire Form defined as Form Elements, so any aspect of the
Form can be changed. Even if you want to create your own Form that's nothing like one of the others, for
instance a letter that's nothing like the normal confirmation letter, you might as well import the confirmation
letter template and delete everything except the header regions (the park & customer address information) so
you have a good starting point.

You may also notice that the sample Forms use the settings from Printing Options and Park Setup wherever
it's applicable, e.g. to show the site name, abbreviation or type, and to get the text to be shown at the bottom
of receipts. This is done by using functions like SettingText() or SettingLocalBool() in the Data or
Condition expressions of the Form elements. If you're making your own custom versions, you may want to
replace these with your own text or conditions as appropriate, or you may prefer to leave them so that
changes to Printing Options still affect your custom Form.

Creating custom Forms from scratch
If none of the sample modification options above works for you, then of course you can create a Form from

scratch. Just click Add Form or Insert Form, enter the name and basic information and start adding Form
elements. See the following Editing Forms section for details.

Editing Forms

The Edit Form Definition dialog is shown when adding or editing Forms from Forms Setup. Other functions
where Forms are referenced, such as the Form Selection dialog, may also have a button to directly edit the
Form without leaving that function and going through Forms Setup.

Here you can edit all of the components of a Form. There are a few fields you edit directly here, and the
main portion of the dialog for editing the "meat" of the Form -- the Form Elements.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 47

Form Name

The name should be descriptive enough for selecting the Form out of a drop-down selection list. Forms will
usually be shown in the order they appear in Forms Setup, not alphabetically, so the name doesn't affect the
order. Each Form must have a unique name (which is not case-sensitive).

Enabled

The Form can be disabled so that it does not appear in receipt selection lists (just uncheck this option).
Technically you could also delete the Form, but it's better to just disable it in case you want to use it later.
This is also handy to disable Forms you haven't finished, so the users don't try to use it (giving it a high
Access Level may also be helpful for this).

Form Type

There are several Form types to choose from, which primarily determine where the Form will be shown as a
selection. For instance a Reservation Receipt format won't be shown if printing a receipt for Unbound
Transactions, and Label Forms will only be shown where it's possible to print a labels (where multiple records
are involved, e.g. the Reports / Mailing Labels function or Find Customers).

Besides being useful for keeping Forms organized according to their use, some types affect what the Form
can contain or what other settings it will have. For instance, only the Receipts Form types can have
transactions in them (at least for the normal purposes of showing them in a Transaction Table element).
Other special situations are mentioned below.

Labels print multiple "Forms" per page (e.g. one instance for each record in a list), and thus have settings for
position, spacing, and the number of rows and columns per page. Of course this technically doesn't have to
be just mailing labels -- you could use this for any special Forms where several records need to be printed
per page, such as a reservation summary report with many details per reservation that wouldn't fit in a single-
row-based Query.

E-mail Form types must have "Text output” for the Printer selection (they can't actually be printed), and
"Character positions" for the Format (their elements can't be positioned in absolute coordinates on a page).

The Window Tag type has a special situation -- if the "Print Window Tag" button is used on the Reservation
Transactions dialog, it will auto-print the top-most Form with this type. This is a special case where the order
of Forms is also important. Note also that Window Tag Forms should always be Reservation-based.

Add-on

If this is checked, you can select one of the "canned" formats as a base for the Form. Nothing about this
canned Form can be modified, but you can add elements on top of it. This is a means to make simple add-
on changes to one of the canned Forms, and of course it's also how all of the default Forms are set up (ass
add-ons with no added elements). Be careful to select an appropriate Form Type for the add-on selected, or
else the results may be unpredictable.

If the format of the Form is Character-positions, such as a 3" receipt or E-mail, be aware any elements are
added on at the end of the canned Form, not in a specific positions.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 48

Format

The format of a Form determines how things are positioned on it. There are basically two choices --
"Variable positions” (in inches or millimeter units), and "Character positions". Note that the inches /
millimeter choices for variable can be changed any time, it won't affect the Form (all Forms are actually
stored with inches, and conversions are done only for your convenience in the editing dialogs).

Any Form that's used with a Windows printer driver, e.g. for an ink jet or laser printer, can use the Variable
positions format. This allows you to place Form Elements anywhere on a page based using absolute
positions, and also allows you to use "Region” elements to sub-divide the Form definition.

The Character position format is primarily for use in E-mail Forms and 3" receipt printer Forms where the
direct-to-port functionality is used. Forms with this format must position the Form Elements using character
positions (line and character column), and can't use Regions. Generally you want to define the lines of these
Forms in order, top to bottom (the same order it's going to be printed), but this isn't strictly required since the
Form's output character array is "built" internally before sending it to the printer. Note that a Character
format Form must select a printer type of either Text Output or 3 Printer - Direct to Port.

Character columns

This is only shown for Character format Forms. An appropriate number of columns should be entered so that
the "bounds" of the printer is known. This is important for aligning text (e.g. right-justified or centered), and
also for auto-wrapping long text.

For 3" receipts, 40 columns us recommended (though some might only work wit 39 columns).

For E-mail, we suggest using 65 columns, though it may work also to put 9999 columns so that text is not
wrapped around automatically (assuming the receiver's E-mail program will wrap appropriately) -- and this
also assumes that you never use right-justified or centered text, or a Transaction Table.

Trans rows/page

This is only an option for Add-on Forms where a canned receipt is selected. Since these have transaction
tables in them (but not as editable elements), you must choose how many rows of transactions can be printed
on each page. If the number is too high, transactions may be cut off or overlap text at the bottom of the
page. Since some receipts may have a lot of "extra" stuff pushing down the transactions or appearing below
it (like credit card info, "Additional sites”, or multiple Receipt #'s), it's best to enter a lower number and let it
print multiple pages even when there's some extra room.

Printer

This simply determines which printer from the Printer Setup selection is used for printing the Form. If you
print everything on a single printer then this may not matter, but it does allow selecting different printers or
have different settings for each type of Form. For instance you might prefer to print some Forms in
landscape mode and others in portrait mode, so you need to use different Printer selections. Also,
Envelopes and of course 3" receipt formats should use the appropriate type.

There are also 4 custom printer selections in case you have special Forms that need specific printer settings.

One of the Printer settings is "Text output (or E-mail)". This must be selected for any E-mail Forms, or any
Character-format Forms that don't go to the 3" receipt printer. It can't be used for Variable-format Forms.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 49

Sections (unique pages in a multi-page Form)

The Sections functionality allows for Forms to have multiple pages with different information on each page.
Or instance you can create a custom Form with several parts on different pages, and they will all print at
once when the Form is printed. Of course most Forms will just have one section.

Note that this does not affect multiple-page printing due to transactions table overflow -- e.g. if it has 2
sections but one section requires 3 pages due to the number of transactions, then it will print that section 3
times (with appropriate transactions) plus the second section, for a total of 4 pages. Of course it also does
not affect printing multiple records -- printing a 2-section Form for 3 records will result in 6 pages.

To use the Sections functionality, you need to include the context function ThisFormSection() in the
Condition Expressions of your Form elements. ldeally, the main Form will simply have one Region for each
section (for logically sub-dividing the Form and making the definition of each section easier), and the
Condition Expression for each of those will just check for the section. This each Region is only printed for
the appropriate section (page) of the Form -- in other words, the Section is the page number of the Form, not
counting the effects of transactions tables overflowing.

For instance: ThisFormSection() = 1 for the first section, and ThisFormSection() = 2 for the second
section. If you include this in the region's condition, then there is no need to include it in every element
contained in each region.

If the Form is an Add-on Form, the receipt type selected will only be in section 1. So you can add an
additional custom section to a canned receipt format, but you cannot create a multi-section Form containing
more than one canned format.

Access Level

This is used to restrict Forms to certain operator access levels, for instance if you don't want store clerks to
be able to print Window Tags. Just select the minimum access level you want to be able to print the Form.

Base Table

The base table determines the primary data table of the Form -- that is, what type of record this Form is
going to show information about. This is mostly used for two things -- where the Form is displayed as an
option. and what context functions are available for expressions. Any table in the database may be selected,
but only a couple are used for most situations -- Reservations and Customers. If you use the Point of Sale,
you might also have Forms for Vendors and Inventory Items.

When printing reservation receipts, for instance, only Forms with "Reservations" as the base table can be
displayed (selections are also limited by the Form Type as described above). When using Print from
Customer Details, the Form Selection dialog will only show "Customers" based Forms, and so forth.

Regarding the context functions, these follow the general rules for expressions. For instance if "Customers” is
the base table, then only ThisCust is useful. If "Reservations” is the base table, then you can use
ThisResv, ThisCust, ThisSite, and ThisPark, because the Form is assumed to be in the context of a
reservation and all of that information is known for a reservation. For some tables, such as Inventory Items,
only ThisRecord is useful (the generic record context function).

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 50

E-mail Subject Expression

If the Form Type is "E-mail", then this option will be available where you can enter an expression to be used
in the Subject line of the E-mail. If this is blank, then the subject specified in the SMTP setup will be used.
Otherwise the expression is executed for the applicable context and the result (assumed to the text) will be
used for the subject. If you simply want to specify text, then enter the quoted text as the expression, like this:
"Thank you for visiting". However you can also include reservation-specific information using the
expression, like: "Thank you for visiting, " + Cust:Cust_First_Names.

Save & Test Form

This function does a test Print of the Form, showing a Print Preview window first. This can be used to test
the Form repeatedly without completely exiting the Edit function.

You should be able to do most testing just in the preview without actually printing (Close the preview to avoid
printing the Form), though some details will require printing to see the actual result. For instance if text
seems to be too long or gets cut off, or lines in a table seem to be obscured by text, this could just be an
inaccuracy in the preview.

Be aware that it does completely save any changes you've made to the Form as soon as you click the
button, so it negates any possibility of cancelling changes you've made.

Records (for testing)

There's a Records setting next to the Save & Test Form button, which determines how many records (of the
given Base Table) are used for testing. Thus if it's set for 10 records, it will attempt to print the Form for 10
reservations, or Customers, or whatever the base table type is. The default is always 10 records, so if you
need more or less, be sure to change it before testing. This number will be remembered for each Form.

This is especially useful for Label Forms, but also handy for other Forms. For full-page Forms, this means
that multiple pages will be printed -- in the Preview window, use the "Next page" button to step through them.
This is a handy way to check Forms for several situations at once, e.g. different types of reservations with
different numbers of transactions. But be careful if you actually Print -- it may print more pages than you
realize!

Note that it always uses the most recent records for testing, starting from the last record. For instance it will
test using the last 10 reservations entered (assuming 10 is entered for records, and "Reservations" base
table). This allows you to add some test reservations before testing and it will use those. If you need to test
with a specific record, you can go to the editing function for that record (e.g. Customer Details), and print
from there using the normal functionality (be sure to enable "Always preview before printing" in Printing
Options / Receipts so that you get a preview).

As E-mail (for testing)

For any Forms with "E-mail" as the Form type, this option will appear next to the Save & Test Form button.
When this is checked, the Form will be tested in an E-mail window instead of a Print Preview window. This
shows it in the proper context, but this also limits testing to a single record. Note that it will be tested with the
most recent Reservation for which the customer has an E-mail address (and thus the testing assumed that
the Form is reservation-based).

Note that E-mail Forms tested in the Print Preview window will be limited to one page -- anything more than
that is cut off. This is because an E-mail Form (or any Character-format Form) is assumed to be unlimited
length so it cannot split it up into multiple pages.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 51

Notes

You can enter any notes for yourself here, or use this as a description of the Form -- they're only seen here
and in the list in Forms Setup.

Form Elements List

A list of Form Elements appears on the Edit Form Definition dialog, as well as on the Edit Form Element
dialog if the element is a Region. It operates the same way in either place, since a Region element is
essentially a Form-within-a-Form.

Form elements are actually "Element" records linked to the Form (or region element), so this list shows those
linked element records. As with most places where record lists are manipulated, the typical functions are
available to Add, Insert, Edit, Copy, Delete, and Move elements in the list. In addition, there are a few
special functions as described below.

The element list contains the Condition and Text of the elements, but depending on the element there's no
guarantee that either one of these will be filled in. So putting in good Notes for the elements can help later.
Also note that the Text column may show different things, e.g. the Expression for data elements or the file

name for Bitmap elements.

Note that the Condition and the Text columns may be truncated (with "..." at the end). This is done
automatically to limit the column widths and keep long text from making the other columns hard to find.
(Even if the columns or the whole dialog is enlarged, it won't show these fields any longer here.)

Form Element Order

When a Form is processed, the elements are processed one after another in the order they appear in this list.
Any Region elements are "recursively” processed -- that is, all of a region's sub-elements are processed
before moving on to the next element at the same level (more is explained about "levels" below). While this
in itself doesn't always make a difference, the order of elements in a Form is actually very important for at
least two reasons.

First of all, it's possible for elements to overlap. Think of an element as "painting” on the page. If one
element overlaps another, it's painted on top if it and can potentially cover up the previous element.
(Regions can partially prevent this for text and data elements, since they clip the text and act like a "cage" for
anything written in the region.)

Secondly and possibly more importantly, it's very common to use relative positioning of elements instead of
absolute page positioning. For instance, one element can "follow" another so it's placed on the page relative
to where the previous element started or stopped. This way you don't always have to figure out exact page
positions -- just arrange the elements in the order you want them to appear on the page. Obviously if the
order of these is changed, then it will affect their eventual position on the page (or worse, result in an error
due to an unknown "previous"” position).

Expand Regions

As mentioned above, Region elements are like a Form within a Form. As such, a region has a list of
elements of its own that are relative to that region. This can include another region, and so forth, resulting in
multiple "levels" of regions, each with their own list of elements.

By default, the Edit Form dialog or Edit Element dialog for a region will only show the elements linked directly
to it -- i.e. the current "level” of elements. As you may see in some of the examples, it's common to define
an entire Form inside a region (so the margins can be changes easily), and then have various areas of the

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 52

Form defined as regions inside that.

The is good organizational practice, but makes it a little more difficult to "explore” the regions to find a
particular data or text element -- the top level (the Edit Form dialog) may have just one Region element, then
you would need to Edit that region element to see the elements inside it. which may just be a few more sub-
regions, and so forth. It may take 3 or 4 levels of "Editing" to get to the actual data and text elements of the
Form.

However if you check the Expand Regions box, all regions at or below the current level are expanded into a
tree-like list. This allows you to see all elements in the entire Form (or current region) in a single list. To
make it easier to read, each level will have a "--->" prefix and will be indented according to the depth, like a
tree view. Also, each level will be shaded differently.

You'll notice that some list functions are not available in expanded mode. You can't Insert or Move
elements, because it can't handle the multiple-level complexities of this. However you can Copy elements
from any level (the new copies will always be placed in the current level). You can also Edit an element from
any level, which is the primary reason for expanding the list -- you can quickly locate the element of interest
and edit it directly without going through each region above that. (Don't forget that double-clicking an
element in the list also does the same thing as Edit).

Import and Export Elements

These functions will import or export any selected elements to a CSV (text) file. The main purpose of this is
to copy the elements to a different Form or to a different level (region) of the Form. You can also export
commonly used sets of elements for importing to Forms you create later. Basically it's like doing a
copy/paste of elements, but going through a file instead of just the clipboard. Note that it's not the same as
the import/export function for a complete Form -- it's strictly for copying or moving selected elements.
However if an element is a Region, then all of the elements contained in that region are also exported
(recursively to any level), and of course they would be imported intact the same way.

When exporting, any elements visible in the list can be exported (even if Expanded as described above), but
they must all be of the same expansion level. You cannot select some elements in one level and some
elements in another level to be exported at the same time.

When importing, all elements imported are placed in the current level (regardless of expansion). For
instance if you're editing a region, then all imported elements are added to that region. If you're editing the
Form (the top level), they are added to the Form. Careful manipulation of importing and exporting elements
allows you to move elements around between levels, for instance to move some elements to a higher or
lower region level.

Editing Form Elements

The Edit Form Element dialog is shown when adding or editing elements from the Edit Form Definition
function. It's also used for adding or editing sub-elements for a Region element's Edit Form Element dialog,
so you could potentially be multiple levels deep into the same dialog.

Here you edit all of the components of a Form Element. This one dialog is used for all types of elements,
even though different information is needed for each type. To help avoid confusion, it will only show the
fields that apply to the element type that's currently chosen. Choosing a different Element Type will
completely change most of the fields available on the dialog.

The common fields available to all elements are described first, followed by the type-specific fields for each
element.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 53

Element Type
Select the type of element you want to show. There are four basic element groups:

Region -- Essentially a Form within a Form, a region contains other elements that are positioned within the
region, relative to the region's position. Thus an entire area of a Form can be moved by simply moving the
region. Any text elements within the region are also "clipped”, so they can't go outside the region. We
recommend using regions for any logically similar "part" of a Form to make rearrangement easy. Regions
can also be used for the purpose of minimizing condition checks (the region's condition expression only
has to be checked once for the whole region, rather than each element), or to help position things in
columns (use a region for each column, and text within the region can be auto-wrapped and still stay within
the column).

Text / Data -- Anything shown as text characters, either static text or text generated from a Data
Expression.

Bitmap / Line / Box graphic elements -- Use a bitmap to include pictures or non-text elements of any kind
on the Form. Lines and boxes can also be drawn as needed.

Transaction table -- These are line regions but with specific content, which is basically a canned
transaction table. The table can be in several formats. While the flexibility of the data shown in this
element is somewhat limited, it's the only easy way of showing transactions on a receipt Form.

Note that Forms with a Format of "Character positions"” cannot have regions or graphic elements, and are
more limited in the transaction table formats available.

Top / Left

These specify the position of the element on the page (or within the region). Each of these can be specified
in one of 5 different ways, which you select from a list. Most will also need a numeric parameter for the
position/offset in inches, millimeters or characters depending on the Form's Format, or a percentage value.
If it's a character-position Form, character positions start at 1 (e.g. line 1, column 1). For variable-position
Forms, positions start at O inches or millimeters.

Absolute (in region) -- The numeric value indicates an absolute position on the page (or relative to the
parent region's position).

Relative to prev. element -- The value indicates an offset from the position (top / left) of the element before
it.

Percentage (of region) -- The numeric value indicates a percentage (e.g. 0 to 100) of the page or parent
region's width / height.

Next avail. (+ offset) -- The numeric value indicates an offset from the "ending" position of the previous
element. See notes below.

Offset from right/bottom -- The numeric value indicates an offset from the bottom or right limits of the page
or parent region.

These allow a lot of flexibility in positioning elements, often without having to know the exact size of a page.

Note that the offset values for "Relative" and "Next avail." positions can also be negative if desired (e.g. to
partially overlap or show a superscript, for instance).

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 54

"Next avail." positioning
The "Next avail" positioning option is a very important one for text (but also useful for other elements).

For Text and Data elements, the next available position is pretty straightforward (unless the Angle is non-
zero as described below). It's the next character or line position, whether the Form is character based or not.
For instance when used for a Top position in an element after a text element, it means the next normal line
available or single-spaced text. You don't have to worry about the size of the text or anything about where
the previous text ended. If you want a little gap, just include an offset of .05 for instance. Or use -.05 to
scrunch the text a little closer together. Likewise, using if for the Left position will start at the next available
character position. Of course you wouldn't normally use it for both the Top and the Left, just one or the other
depending on whether you want the next text to be on the next line below or on the same line right after the
previous text.

For other elements, there are some special considerations:

Transaction Tables -- The next available Left position is the right side of the table's area (not necessarily

the last character printed), but the next available Top position is the actual next text line position. This is
because it's common to want the next text to start just below where the transactions ended, but there's no
way to know how many lines will be in the table beforehand.

Lines and Boxes -- The next available top/left position will be the exact bottom/right of the line or box
(mostly useful for positioning the next line or box to be drawn).

Bitmap images -- The next available top/left position will be the exact bottom/right of the image according
to the element definition. However this is not necessarily the bottom/right of the image as drawn because
of the special cases for zero hight or width (see below). In other words if you specify a O width, then the
next left position will also assume that the bitmap was 0 width even though that really meant to keep the
correct aspect ratio. Also note that this may change in the future, so it's best not to use next available
positioning after a bitmap at all unless you're specifying the exact size.

Regions -- At the "receiving” end, regions are considered a Form-within-a-Form so the "Next available"”
position coming into a region, that is for the first element inside the region, will always be zero (which of
course is the starting position of the region, not the actual corner of the page). However coming out of a
region it remembers the "Next available" position of the last element inside the region. Therefore the next
element after the region will know where the actual printing inside the region left off. Thus it's perfectly fine
to make a region larger than you expect it might need, and then after the region you can pick up where the
last text inside the region actually stopped.

Finally, don't forget the effects of the Condition -- as mentioned below, the "Next avail." position only counts
the last element that's actually printed.

Condition

This Expression determines whether the element is included in the Form, and must return a True or False
boolean value. If used for a region, it affects all sub-elements in the region also (the entire region is skipped
if the condition is False). To edit the condition expression, click on the text box or click the Edit button next
to it. The Expression Creator dialog will be used to enter the expression.

Note that if the element is excluded due to the condition, then it's considered non-existent for purposes of
positioning also. That is, the "Relative" and "Next Avail." positioning mentioned above refers to the last
element that's actually used, not necessarily the one just above it in the list.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 55

Notes
These notes are for your reference, and will also appear in the list of elements. We recommend putting

notes in especially for Region elements so you can see what's included in the region, but it's a good idea for
any element that's not obvious so you can tell what's going on if you need to edit the Form later.

Region Element Fields

Fields specific to Region elements:

Border

When this is checked, a simple black line will be drawn around the region. Even if you don't plan on having
borders in the final Form, this is very helpful in determining whether your region is positioned and sized
properly while you're testing it.

Bottom / Right

Regions must have a bottom and right boundary. As with the Top / Left position there are several ways to
specify the bottom / right boundaries, with a few minor differences as described here:

Relative (height / width) -- The value indicates an offset from the Top / Left position of this element (so it's
effectively a height or width value).

Absolute (in region) -- The numeric value indicates an absolute position on the page (or relative to the
parent region's position).

Percentage (of region) -- The numeric value indicates a percentage (e.g. 0 to 100) of the page or parent
region's width / height.

Percentage, relative -- The numeric value indicates a percentage of the space remaining on the page or
parent region, starting from the top / left of the region.

Offset from right/bottom -- The numeric value indicates an offset from the bottom or right limits of the page
or parent region.

Sub-elements in Region

All elements contained within the region are shown here, with typical editing functions. This works the same
way as the top-level Form Elements List, so refer to that section for details.

Text and Data Expression Element Fields
These fields are specific to text and data elements (with only a couple differences as mentioned below).

If the Form uses Character-position format, most of the font and formatting options are not available -- only
the alignment and auto-wrap options can be used. Also note that for Forms using direct-to-port printing, the
Text (or Expression result) may have "escaped” hexadecimal characters such as for auto-cutter or cash
drawer control. These must be in the form \xHH, for instance \x07 to send the BEL character. Note the
direction of the slash (backslash), and that the "x" is lower-case. Also note that if any such escape

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 56

sequences appear in center-aligned text, the alignment is based on the resulting single character, not the 4-
character escape sequence.

Text (only in Text elements)

This is the static text to be displayed. It can actually be any length -- click the Edit Text button to open a
larger window to edit long text. Note that the text can also include multiple lines, as long as the Auto-wrap
option is also checked (of course this also results in auto-wrapping any lines too long for the region or page).
Multiple lines will be shown as-is in the large editing window, but the line breaks will be shown as " \\ " in the
single-line edit box.

Expression (only in Data Expression elements)

This is an expression which will be executed and the results will be shown as text, subject to the Format
below. Once the expression is evaluated and formatted, all other aspects of the element work the same as a
text element (e.g. the return value of the expression becomes the "static text" to be shown). To edit the
Expression, click on the expression text box or click the Edit Expression button. The Expression Creator
dialog will be used to edit the expression.

Format (only in Data Expression elements)

This determines the text formatting of numeric values, assuming the expression results in a number. For
non-numeric data, the "General" option should be chosen. For numeric data, select an appropriate format,
e.g. Currency, Integer, Percent, or Floating Point. If none of these quite fits your needs, then you can select
Custom Format and enter an expression to format the data any way you need to.

Custom Format Expression (only in Data Expression elements)
This field only appears when the Format selected above is "Custom Format". To edit the format, click the

Edit Custom Format.. button or simply click on the text box below it. This invokes the Expression Creator
dialog to edit the format expression.

The format expression should simply convert a numeric value to text. The numeric value to be formatted will
be available with the context function ThisValue, which will already be shown in the expression the first time
you edit it. There are several functions available for formatting numeric values. For a simple example, lets
say that we want to take the number an show it as a currency value rounded to the nearest dollar. The
expression entered would be:

Currency(Round(ThisValue(), 0))

Color

This determines the color of the text and the background of the text. An example is shown with the current
colors selected. Click the Text or Background button to change the combination as needed, and these will
allow you to choose any color. Of course black text and white background is the default, and the background
is typically white (unless you want to use a lot of ink!).

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 57

Font

Any font that's installed in Windows can be used, in any size supported, with any combination of Bold, Italic,
or Underlined attributes. The most common font names are "Arial" and "Times new Roman", and
occasionally "Courier New" for fixed-pitch text. To change the font using the standard Windows font-
selection dialog (which usually shows an example of the font), click the Select Font button.

Note that new elements will default to the most recent font selected, or the last font used in a Form element,
so you don't have to constantly change the font for every element in the Form.

Shrink to fit available width

When this is selected, it can automatically resize the text to keep it on a single line, within the borders of the
page or parent region. You also specify the smallest font size to which you'll allow it to shrink (anything
smaller than 8 can be very hard to read). If even the smallest size doesn't allow it to fit, then the text will be
truncated (this can't be used with the auto-wrap option).

Align Text

Choose how to align the text on the page (or within the parent region), either Left, Right, or Center. You can
also choose to center the text vertically within the region.

Auto-wrap

When this is selected, text that's too long for one line will auto-wrap (without breaking words) to multiple lines
as needed. This is also required for supporting text with forced line breaks in it -- essentially any text that you
don't want limited to a single line.

Angle

Using this is rather tricky, but it does allow support for drawing text at any angle. Enter a number from 0 to
360 (0 is normal horizontal, 90 is "up”, 180 is upside down, etc.). Note that the text may or may not obey the
bounds of any region, and the Auto-wrap, Alignment, and Shrink-to-fit options will be ignored. Only single
lines are supported. Also, the "Next Avail" positioning of the next element may or may not have the results

expected.

Basically it's fine for single-line text, but if you want multi-line text you'll need to manually figure out the
absolute position for each line for the given angle, and how much will fit on each line.

Bitmap Element Fields

The following fields are specific to bitmaps:

File name

Enter the file name or use Browse to select it. Note however that the file must reside in the same folder as

the current database, and it's not backed up with the database (basically just like Map files). Thus you may
need to copy any files used to all computers using Campground Master.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 58

Bottom / Right

Bitmaps must have a bottom and right boundary. This indicates the area on the Form that the image will
occupy, and if the original image is not exactly that size then it will be stretched to fit in this space (height and
width are stretched separately, which can distort the image).

The same Bottom / Right options are available here as for Region elements, so refer to those above for
details.

However there are a couple special case for bitmaps -- if both a height and width of 0 is specified (e.g. using
the Relative option), then the actual image height and width is used for that dimension. This allows a 1:1
image sizing, however this will be in "pixels" -- so it may appear smaller than expected on the page.

Another option is to use one of the other options for one dimension and a Relative / 0 option for the other.
The image will be stretched to fit the non-zero height or width specified, and also stretched in the other
dimension to keep the aspect ratio. For an example, if you want the image to be in the upper left corner and
exactly 4 inches wide, keeping the correct aspect ratio, then use the following settings:

Top : Absolute / 0

Left : Absolute /0

Bottom : Relative / 0 (which means keep the aspect ratio)

Right : Absolute / 4.0 (make it 4 inches wide)

Line Element Fields

The following fields are specific to lines:

Bottom / Right

Lines must have a bottom and right position to specify the "end" of the line. The line will be drawn straight
from the top/left to the bottom/right, which can be any direction. The same Bottom / Right options are
available here as for Region elements, so refer to those above for details.

Color

This determines the color of the line. An example is shown with the current colors selected. Click the Line
button to change the color of the line. Note that the (background) is not actually used in drawing the line, but
if the line is to be white then you can select a black "background” just so the example shows up.

Line width

Enter a number for the width of the line. Of course 1 is the skinniest. The number is generally in printer-
dots, so the actual width in physical size may depend on the printer used.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 59

Box Element Fields

The following fields are specific to boxes:

Bottom / Right

Boxes must have a bottom and right position to specify the other corner of the box. The same Bottom / Right
options are available here as for Region elements, so refer to those above for details.

Color

This determines the color of the outline of the box and the fill color. An example is shown with the current

colors selected. Click the Qutline button to change the color of the line around the box, and the Fill button to
change the interior filled color of the box.

Line width

Enter a number for the width of the outline of the box.

Transaction Table Element Fields

The following fields are specific to transaction table elements. Note that for character-position format Forms,
only the Bottom/Right and Table Type fields are available and the narrow paper format option is assumed.

Bottom / Right

Transaction tables must have a bottom and right position, similar to regions, which specifies the bounds of
the table . The same Bottom / Right options are available here as for Region elements, so refer to those
above for details.

Font / Shrink to fit

You can choose the font as well as the shrink-to-fit option just as for text elements above. Note however that
the shrink-to-fit option applies to each cell of the table individually, not the table as a whole. Also, the font
attributes for bold, italic and underlined cannot be chosen for table.

Table Type

There are four different types of tables available (only two of them can be used for character format Forms).

Standard receipt -- The basic receipt-type table used for most receipts, invoices, etc., where the charges
and discounts are shown on the first section, then taxes, then any credits, and finally any payments.

Reqister-style statement -- In this format, the transactions are shown in their original order, with columns
for Charges, Payments, and Balance after each transaction.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 60

Credit card slip -- This is designed to just show the credit card payment -- it will only show the mos recent
payment transaction on the slip with the total amount paid.

Purchase order -- This is for use only in Point of Sale purchase orders, where it uses purchase order
transactions instead of customer transactions.

Narrow paper format

This flag is generally for 3" receipt printer output where the space is limited, but is also used for E-mail where
a variable positioning of columns is not possible. It uses two lines for transactions, with the transaction
description on one line and the quantity, each and total on a second line. The total will be right-justified
according to the number of columns (or boundary of the table element).

Grid lines

Select this option if you want grid lines for the table. Don't forget that this can make receipts print much
slower on ink jet printers.

Shade / color cells

Select this option if you want the Total column background shaded grey and the Total / Balance label in a
black background. Don't forget that this does take more ink.

Shrink to fit more lines

This option allows it to use an overall smaller font for the table as the number of lines increases, so more
lines can fit on a page. It's more efficient than printing multiple pages while allowing short receipts to have
larger text, but it does make them less consistent. When this is selected, you also specify the minimum font
size to use. It will shrink the font when needed to fit the rows within the table's area.

Max rows / page

You need to specify the maximum number of that can be printed rows per page. If the number is too high,
transactions may be cut off or overlap text at the bottom of the page. Since some receipts may have a lot of
"extra" stuff pushing down the transactions or appearing below it (like credit card info, "Additional sites”, or
multiple Receipt #'s), it's best to enter a lower number and let it print multiple pages even when there's some
extra room.

Note that if the Shrink-to-fit option is enabled, assume that the smaller text size will be used by the time it
reaches the maximum, and do some testing to see how many you can really fit with the maximum amount of
"other" stuff printed (resulting in the smallest area available for the table).

Date / Qty / Each / Total widths

Enter the width desired for each of these columns. You may enter O for the Date width to exclude that
column, but the other columns will always be included. You could enter O for their widths, but some
remnants would still remain.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 61

Note that for the Register-style statement, there is no Qty or Each column so this information is added to the
Description, like "(6 @ $10.00)". The Each width is used for both the Charges and Payments columns, and
the Total width is used for the Balance column.

You'll notice that there's no setting for the Description column -- the Description column will use any of the
table's overall width left over after sizing the other columns.

Form Selection Dialog

A general Form Selection dialog is used in many places throughout Campground Master, typically for
selecting a Form to print (e.g. from Eind Reservations, Customer Details, Sites Setup, etc) or for selecting an
E-mail format to use (from Transactions / E-mail Confirmation).

In some cases, the Form Selection dialog will also have an option at the top to print a Grid format instead of
a Form. This will typically print a list of fields for the current record (e.g. if invoked from a single-record
dialog like Edit Site or Customer Details), or it will print the entire list of records being shown (e.g. if invoked
from a multiple-record dialog like Find Customers).

If the grid option is not selected (or not available), then a drop-down list will contain one or more Form types
to choose from. When a Form type is selected, any available Forms of that type will be shown on the list
below. Just double-click on that Form (or select it and click the OK, Print, or Use button as appropriate) to
use that Form.

There may also be an Edit Form button available if the current operator has sufficient access permissions to
edit Forms. This allows you to edit the Form and then come back to print it again, without going back to the
Maintenance functions.

Note that if Print Preview is enabled for receipts (through Printing Options), then of course it will show a
preview of the Form when the Print button is clicked. An added benefit is that if you Cancel the preview
instead of Printing, you'll still be in the Form Selection dialog where you can choose another Form, or Edit
the Form and try again.

Menus

Overview

Almost any of the drop-down or right-click menus in Campground Master can be customized with additional
functions defined by expressions. Any number of menu selections can be added to the menus, which can
also be organized in sub-menus any number of levels deep.

In addition, existing selections in the menus can be conditionally renamed or deleted to clarify or simplify the
functions seen by most users.

Note that all menu customizations are done within the existing menu structure, modifying the standard menus
-- it's not possible to create a completely "new" menu, simply because the program wouldn't know when or
where to show it. However you can modify the very top menu bar, which means you can add a new drop-
down menu to it (as well as add sub-menus in any of the drop-down menus), and you can modify almost any
of the right-click menus in the system to add functions or sub-menus.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 62

Menus Setup

To modify a Menu, go to Maintenance / Advanced Customizations / Menus. This opens the Menus Setup
dialog, which lists all current Menu Definitions and has the typical functions for Adding, Inserting, Editing, etc.
Note that while there are functions to Move Up and Move Down, a Menu Definition's position in the list does
not usually affect the functionality. However if you create multiple definitions which modify the same menu,
then the order in the list can determine the position of any new Menu Items added to the menu.

You can also Export one or more Menu Definitions to a text file, or Import Menu Definitions. This is primarily
used for importing Menu Definitions created by the software provider, though it can also be used to transfer
them between multiple databases.

Note: We refer to the entries as "Menu Definitions", but they're not actually "new" menus and don't even
necessarily add anything to a menu (it could just modify the text of an existing selection in a menu). A
Menu Definition is simply a list of "ltems" to change in a specific menu, where each "ltem" defines some
change to the selected menu. The change could be to add a new selection in the menu which performs
an "Action" when it's clicked, or the change might just be a command to remove or rename an existing
selection, or it could be a complete sub-menu structure.

Menu Definitions cannot have duplicate names (this is primarily just to avoid confusion during setup). If you
make a Copy of a Menu Definition, text like "(copy 1)" will be added to the name to make sure it's unique. Of
course you can change this to be more appropriate. Duplicate checking for the names is not case-sensitive
("My Menu" is considered the same as "my menu").

Some common modifications are described below, to give you an idea of what can be done.

Removing menu selections (e.g. based on access levels)

While most functions in the menus can have their allowable access level changed through the standard
Access Levels setup (Maintenance / Park Setup / Access Levels), this will only disable the menu selection
rather than remove it from the menu. If you prefer to remove the disallowed functions, in order to simplify
the menus for your users, then you can do it through the Menu Definitions.

To disable a menu selection, Add a Menu Definition for the appropriate Base menu. Then in the Edit Menu
dialog, Add a Menu Item. In the Edit Menu Item dialog, select "Remove selection". Now select the option to
find the selection by "ID/Command", and choose the menu selection form the large drop-down list.

Now set the Condition expression for when to remove the item. (If the Condition is blank, it will always
remove it.) For instance if you only want to remove the selection if the current operator has a low access
level (e.g. non-administrator), then you would enter a Condition expression like this (note that access levels
are 0 to 5, where 0 = Guest and 5 is Administrator):

Fi el dval ue(Current OpRec(), " Oper _Access") > 4

You can add as many Menu Items as needed in the same Menu Definition, to remove other items in the
same menu.

Renaming menu items

If you prefer to use different text in the menus, either for clarification or to localize it to your language as
much as possible, you can use the same procedure as described above for removing items. The only
difference is that you would select "Rename selection" instead of "Remove selection” as the item type, and
you would probably not have a Condition. Then just enter the new name in the Selection Name field.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 63

Adding new functions to a menu

While the possible actions are limited by what can be defined with Expressions, there are many expression
functions available for typical operations that will probably do anything you would want to do.

For instance there may be something you do often that takes several steps, which could be simplified by
adding a custom Action to a menu which does it all at once. Or you might need to do some complex
manipulations with the data on a regular basis and output that to a file -- this could be done with a Script, and
adding a Menu Item somewhere to execute the Script makes it easy to perform the function whenever you
need to. Likewise, you could read a file and process the data in a Script, such as reading the output of a
phone system and adding the charges to the appropriate reservations.

Remember that right-click menus will have the context available for the expression defining the action, so for
instance you can access the specific reservation that was clicked on. Top-level menus don't have any
context to work with, but potentially some very complex actions could be created through scripts -- for
instance to scan the entire database for a certain condition and show that information in a pop-up window or
even a custom Dialog.

As a quick example, lets say that you want to add a command to the right-click menus to send a simple
"Thank you for staying” E-mail (e.g. you could do this whenever you check them out).

First Add a Menu Definition for the appropriate Base menu -- in this case, "Right-click - Reservation, on other
views" so it appears in the Departures tab view (you could do the same for the Rack right-click menu). Then
in the Edit Menu dialog, Add a Menu Item. In the Edit Menu Item dialog, select "Execute Action”. Enter an
appropriate Selection Name, like "Send Thank-you E-mail".

Naturally this only makes sense if the customer has an E-mail address, and lets assume we also don't want
this selection to appear in the menu until after the Check-out has been done. We can add this Condition so
that the selection only appears when needed:

Cust:Cust _Email !'="" AND Resv: Resv_Status = "Checked Qut"

Now add the Action Expression, which will use the SendEmail function. (Note that this only works if you have
the SMTP E-mail settings configured -- see Online Setup.) Obviously a real message would be longer than
the one below, and you may want to include some fields from the reservation in it to personalize the
message, but this should give you the general idea:

SendEmai | (. T., "", "", Cust:Cust_First_Nanmes, Cust:Cust_Email,

"Re: Your recent stay", "Thank you for staying with us. Conme Again!")

Save that Menu Item and you'll be back in the Edit Menu Definition dialog. Here you might want to fill in the
"Insert at position” field so that the item you just added doesn't go at the very bottom. For instance, a value
of 8 should put it right after the Check Out function on the Departures tab. Then Save the menu definition.

Editing Menus

The Edit Menu Definition dialog is shown when adding or editing Menus from Menus Setup.

Here you can view and edit all of the Items in a Menu Definition. There are a few fields you edit directly
here, and the rest of the dialog lists the Menu Items.

Menu Definition Name

The name should be descriptive enough for identifying the Menu in Menus Setup, but that's generally the
only place it's used. Each Menu Definition must have a uniqgue name (which is not case-sensitive).

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 64

Enabled

The Menu Definition can be disabled by unchecking this box, so that it does not get processed. Note that if
it's disabled, it doesn't just mean that the items added to the menu are disabled (greyed out) -- it means that
the Menu Items in the definition won't be processed. Therefore it won't modify the base menu at all, as if the
definition is not even there.

Modify Base Menu

Each Menu Definition is simply a list of things to do to an existing menu, so you need to select which menu it
will modify from this list.

Main menu definitions can modify the top level menu (the menu bar across the top) or any one of the drop-
down menus from there. Note that only the direct (first-level) drop-down menus can be selected, so any
additions to the menu can only be made to that level. Of course you can add your own sub-menu at that
level, and the sub-menu can contain any number of levels beneath it. However you can't add an item
directly inside the Printer Setup under the File menu, for instance.

Note that while you can't add new selections (e.g. Actions or Sub-menus) at lower levels, it's still possible to
modify existing selections at any level in the menus. For Remove or Rename item types you can choose the
menu selection (ID) at any level below the base menu. So for instance you could completely remove all
Printer Setup selections for non-administrator users.

Most right-click menus can also be selected as the Base Menu to be modified. Some right-click menus are
specific to a particular view (e.g. for the Rack or Map) because the conditions there are unique, while the
other views and situations are more general -- those base menu selections will affect the menu on any of the
other tab views. For instance the same "Transactions" right-click menu is used for any view where a
Transaction is selected, e.g. in the Transaction tab view and any user-defined Query based on Transactions.

Context for Expressions

Any right-click menu will have some context information available for the expressions in its Menu Items.
Naturally the information available depends on which menu is the selected as the base, and in some cases
the record selected when right-clicking will determine the context available.

For instance in a Transactions menu, ThisTran() will always be available, plus there might be ThisCust()
and ThisResv() context info if the transaction is for a customer or reservation. A Customer menu will only
have ThisCust() available, and the right-click for queries of "Other record types" will just have the generic
ThisRecord().

On the Rack, ThisDate() will be available for the cell clicked (and ThisPeriod(), if applicable, when viewing
Scheduled reservations).

The Cross table Query menu will have a list of records "included" in the clicked cell (e.g. used for the
calculation in that cell), so ThisRecList() and ThisRecCount() are available to access those.

The context functions ThisFromDate() and ThisToDate() can be used to get the From and To dates
selected in the tab view or query report.

Menu Items List

A list of Menu Items appears on the Edit Menu Definition dialog, as well as on the Edit Menu Item dialog if
the Menu Item is a Sub-menu. It operates the same way in either place, since a Sub-menu Item is

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 65

essentially a Menu-within-a-Menu.

Menu items are actually "ltem” records linked to the Menu (or sub-menu item), so this list shows those linked
item records. As with most places where record lists are manipulated, the typical functions are available to
Add, Insert, Edit, Copy, Delete, and Move items in the list. In addition, there are a few special functions as
described below.

The item list shows the Condition and Text of the items, but depending on the item there's no guarantee that
either one of these will be filled in. So putting in good Notes for the items is recommended.

Note that the text in some columns may be truncated (with "..." at the end). This is done automatically to
limit the column widths and keep long text from making the other columns hard to find. (Even if the columns
or the whole dialog is enlarged, it won't show these fields any longer here.)

Menu Item Order

When a Menu Definition is processed, the items are processed one after another in the order they appear in
this list. Any Sub-menu items are "recursively" processed -- that is, all of a sub-menu's sub-items are
processed before moving on to the next item at the same level (more is explained about "levels" below).
While this in itself doesn't always make a difference, the order of items in a Menu Definition determines the
order they're added to the menu (assuming the item isn't just a Rename or Remove item).

Expand Sub-menus

As mentioned above, a Sub-menu item is like a Menu within a Menu. As such, a sub-menu has a list of
items of its own that are relative to that sub-menu. This can include another sub-menu, and so forth,
resulting in multiple "levels" of sub-menus, each with their own list of items.

By default, the Edit Menu dialog or Edit Item dialog for a sub-menu will only show the items linked directly to
it -- i.e. the current "level" of items.

However if you check the Expand Sub-menus box, all sub-menus at or below the current level are expanded
into a tree-like list. This allows you to see all items in the entire Menu Definition (or current sub-menu) in a
single list. To make it easier to read, each level will have a "--->" prefix and will be indented according to the
depth, like a tree view. Also, each level will be shaded differently.

You'll notice that some functions are not available in expanded mode. You can't Insert or Move items,
because it can't handle the multiple-level complexities of this. However you can Copy items from any level
(the new copies will always be placed in the current level). You can also Edit an item from any level, which is
the primary reason for expanding the list -- you can quickly locate the item of interest and edit it directly
without going through each sub-menu above that. (Don't forget that double-clicking an item in the list also
does the same thing as Edit).

Import and Export ltems

These functions will import or export any selected items to a CSV (text) file. The main purpose of this is to
copy the items to a different Menu Definition or to a different level (sub-menu) of the Menu Definition. You
can also export commonly used sets of items, for importing to Menu Definitions you create later. Basically
it's like doing a copy/paste of items, but going through a file instead of just the clipboard. Note that it's not
the same as the import/export function for a complete Menu Definition -- it's strictly for copying or moving
selected items. However if an item is a Sub-menu, then all of the items contained in that sub-menu are also
exported (recursively to any level), and of course they would be imported intact the same way.

When exporting, any items visible in the list can be exported (even if Expanded as described above), but

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 66

they must all be of the same expansion level. You cannot select some items in one level and some items in
another level to be exported at the same time.

When importing, all items imported are placed in the current level (regardless of expansion). For instance if
you're editing a sub-menu, then all imported items are added to that sub-menu. If you're editing the Menu
Definition (the top level), they are added to the end of the definition. Careful manipulation of importing and
exporting items allows you to move items around between levels, for instance to move some items to a
higher or lower sub-menu level.

Editing Menu ltems

The Edit Menu Item dialog is shown when adding or editing items from the Edit Menu Definition function. It's
also used for adding or editing sub-items, from a Sub-menu item's Edit Menu Item dialog, so you could
potentially be multiple levels deep into the same dialog.

Here you edit all of the components of a Menu Item. This one dialog is used for all types of items, even
though different information is needed for each type. To help avoid confusion, it will only show the fields that
apply to the item type that's currently chosen. Choosing a different Menu Item Type will completely change
most of the fields available on the dialog.

The common fields available to all items are described first, followed by the type-specific fields for each item
type.
Menu Item Type

The item type defines what will be done to the base menu -- either adding something to it (an action,
separator or sub-menu) or changing something already in it (remove or rename a selection).

Execute Action -- This adds a selection to the menu, which executes an expression when the selection is
clicked on.

Sub-menu -- This adds a selection which doesn't do anything itself, but opens another menu. You also
define all of the selections which will be in that sub-menu.

Separator -- This just adds a line in the menu, used for separating groups of selections.

Remove selection -- This will completely remove an existing selection from the menu.

Rename selection -- This will change the name of an existing selection in the menu.

Condition Expression

All Menu Item types can have an optional condition expression. If a condition is entered, this determines
whether the item is processed, e.g. whether the selection is added or not, or whether the selection is
removed/renamed or not. It doesn't just disable the item (that's done by access level -- see below).

The condition expression must return a True or False boolean value. If used for a sub-menu, it naturally
affects all sub-items too (the entire sub-menu is only added if the condition is True). To edit the condition
expression, click on the text box or click the Edit button next to it. The Expression Creator dialog will be used
to enter the expression.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 67

Notes

You can add Notes to any item to help clarify its use. The notes will only show up in the list of menu items
(the user will never see the notes).

Execute Action Items

Action Items are the main part of a menu -- the selections that actually do something useful. Anything you
see in a menu that's not a sub-menu or separator is an "Action" item, whether it does something immediately
(e.g. Save the database file) or opens a dialog prompting for more information (e.g. Log In).

Access Level

Select the lowest access level that should be able to do this action. If the current operator does not have this
level or higher, the selection will still be in the menu but it will be disabled (greyed out).

Menu Item Selection Name

This is the text that will appear for the action item in the menu. You can either enter static (hon-changing)
text, like "Delete reservation”, or you can create an expression such that the menu text will change
depending on the situation or the record in question (e.g. "Extend by 1 month (to April 30)").

You need to select which way you want to enter the selection name (click one of the radio buttons), and then
the appropriate entry field will be shown. If it's static text, then just enter it in the Selection Name field. If you
choose to enter it as an expression, the Selection Name box will be greyed out -- to edit the condition
expression, just click on the greyed-out box or click the Edit button next to it. The Expression Creator dialog
will be used to enter the expression.

Underlining Hot-key letters

You can specify which letter is underlined, to be used as a hot-key for the menu selection, by inserting an
ampersand ("&") in the text. For instance if you enter "Delete re&servation”, the "s" will be underlined and
will be the hot-key, and it will be shown as "Delete reservation”. Then in the resulting menu you can just
press "s" on the keyboard instead of using the mouse to click on the selection in the menu.

Be careful about underlining a letter that's already used as a hot-key. If there's more than one selection in
the same menu that uses the same hot-key letter, pressing that key will only move to that selection (highlight
it) -- it won't execute it. Pressing the key again would move to the next one with that hot-key, etc.

Note: If you actually want to show "&" in the menu, like "This & That", then you need to use two of them in
the selection text: "This && That". This tells Windows that you want to show the & instead of underline the
next letter.

Important: There's an option in Windows XP to hide the underlines until you press the Alt-key, and in
Microsoft's wisdom they seem to have enabled that option by default in some cases (why confuse the user
with all those underlines, right?). So if you don't see any letters underlined in the menu, just press the Alt key
and the underlines should show up (this applies to all menu selections, not just the ones you add). You can
also disable this option in XP by going into Desktop Properties (right-click on an empty desktop area), click
the "Appearance" tab, click the "Effects" button, and uncheck the "Hide underlined letters" option.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 68

Action Expression

This defines what will actually happen when the menu item is selected. Simply put, this expression is
executed when the item is clicked. The result of the expression is not used, so it doesn't have to return any
particular type of value. To edit the action expression, click on the text box or click the Edit button next to it.
The Expression Creator dialog will be used to enter the expression.

Naturally the expression should "do" something useful. Many useful functions are available to do things like
show a message, open Queries, send E-mail, print Forms, open Dialogs, or even just execute another menu
command. To browse some of the possible actions, select the "User interaction” function type (through Insert
Expression Element, in the Expression Creator dialog).

Of course it doesn't necessarily have to do anything visible -- for instance you can just set a field value. But
we recommend that you always show some indication that the action was performed, e.g. with a
MessageBox() confirming the action and perhaps showing the details or results, so the operator knows that
something actually happened and that they clicked the right thing.

If you do anything complex, e.g. more than one function, then it may be a good idea to create a Script for it
and then just use CallScript() to call the Script from the Action expression here.

Sub-Menu ltems

A sub-menu is used to organize menu functions in logical groups, and to keep each level of a complex menu
from getting too long. A sub-menu will have a name in the menu just like an action item, but clicking on it
will simply open another menu (usually to the right of the sub-menu item, if there's room for it there). A right-
arrow indicator will be added to the right edge of the menu automatically (by Windows), to indicate that it will
open another menu.

A sub-menu item needs a Selection Name to be shown in the menu, which is described above for Execute
Action items (see "Menu Item Selection Name" above).

A sub-menu also needs Menu Items of its own, so a list of Menu Items will be shown here with applicable
editing commends, just like the Edit Menu Item dialog. See the previous section about the Menu Items List
for details.

Separator Items

A separator is just a line in the menu used for organizing selections into groups, so there's no more
information needed for a separator.

Remove Selection / Rename Selection ltems

These item types are used for modifying existing selections in a menu. Generally this is done for standard
selections that the program includes, but it's also possible to do it for selections that you've add yourself
(though it's better to handle this with the Condition or Selection Name expression of the original Menu Item
definition).

If it's a Rename Selection item, it needs a new Selection Name that the original menu selection will be
renamed to. This field is described above for Execute Action items (see "Menu Item Selection Name"
above).

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 69

Finding the Item to remove/rename

For both Rename and Remove selection items, it needs to know which item to act on. You can have it find
the item by name or by its internal ID/command, so first select which way you'll find it.

Whenever possible, e.g. whenever it's for a standard menu command, choose the ID/Command option and
select the appropriate command form the list. The list shows all menus in the system that can be modified,
with all sub-menu command items. Note that the "ID to remove" will be shown for the selected item, but only
for reference -- it cannot be modified directly.

Tip: You can use this to find out the command ID of a menu item, for instance if you want to execute the
command through the expression function MenuCommand().

While you could choose to find the item by name, that might not always work -- sometimes a selection's
name is changed based on the condition (e.g. "Check out" vs. "Undo check-out"), and it's also possible that
the menu selection name may change in future versions of the software (but the command ID should never
change).

There are some cases where you do need to find it by name. If it's an item you added through a Menu
Definition yourself, the ID is not known at this time so the name must be entered. Also, sub-menu names
don't have an ID, so they would have to be located by name. For instance if you wanted to rename the "Park
Setup"” sub-menu selection under Maintenance, you would have to find it by name.

Note that in either case, the "search" for the selection is recursive -- it will look at all levels of sub-menus
below the base menu of the Menu Definition until it locates the selection to be renamed or removed. Of
course if it doesn't find a match, then nothing happens.

Important: When searching by name, any ampersand characters ("&") in the menu selection will be ignored.
For instance if the original menu selection name is "&File" so that it's shown as "File" in the menu, you should
only enter "File" in the text to search for.

Dialogs

Overview

Through the Dialogs Setup functionality, several of the main data entry dialogs can be customized to a large
extent -- new entry fields can be added to a dialog (e.g. for new data fields added to a table through Data
Field Definitions), existing controls can be disabled, deleted, moved or renamed, and the dialog can be
enlarged to accommodate new fields. Additional actions can be taken when any control is activated (e.g.
when a button is clicked, edit field changed, etc.), supplementing the normal program operation with your
own special functionality.

In addition, completely new dialogs can be created for displaying information or for data entry. A custom
dialog can be displayed by calling the Expressions function DIgOpenUserDialog(), for instance when a new
button is clicked on another dialog, or through a custom Menu Definition or when an Event Action is
triggered.

As with all advanced customizations, this requires a rather technical understanding of the system. It must
also be emphasized that modifications to existing Dialogs are more "dangerous" than most other
customizations because they change the operation of the program, and can also cause a system
malfunction.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 70

Dialogs Setup

A "Dialog Definition" is a list of instructions for modifying a particular dialog. Create a Dialog Definition for
each system dialog that you want to modify, or for each new dialog you want to add.

Note that only one Dialog Definition can be enabled for each system dialog, e.g. for the Edit Reservation
dialog, but the definition can contain as many Dialog Elements as needed to make all of the customizations
you want.

To create a Dialog Definition, go to Maintenance / Advanced Customizations / Dialogs. This opens the
Dialogs Setup dialog, which lists all current Dialog Definitions and has the typical functions for Adding,
Editing, etc. Since the order of the definitions doesn't affect any functionality, there is no Insert command --
but you can Move the dialogs up or down in the list if you want to rearrange them.

You can also Export one or more Dialog Definitions to a text file, or Import Dialog Definitions. This is
primarily for you to import Dialog Definitions created by the software provider, though it can also be used to
transfer Dialog Definitions between multiple databases.

Dialog Definitions cannot have duplicate names. If you make a Copy of a Dialog Definition, text like "(copy
1)" will be added to the name to make sure it's unique. Of course you can change this to be more
appropriate. Duplicate checking for the names is not case-sensitive ("My Dialog" is considered the same as
"my dialog").

Expression Functions for Dialogs

Most expressions in dialog element definitions need to do something with the controls in the dialog -- such as
get and/or set a dialog control's current value, change which control has focus, modify controls or perform
other functions within the dialog. A whole set of functions are available for this, all of which start with the
letters "DIg". Refer to the function types "User-defined dialogs" in the Expression Elements dialog (through
the Insert Expression Element function of the Expression Creator) for all of the functions available for
accessing and working with dialog controls.

Note that there are separate sets of functions for new controls (added by the dialog definition) vs. standard
controls (in an existing dialog), because new controls must be referenced by name whereas existing controls
must be referenced by a numeric control ID. Be sure to use the functions with "User" in the name to access
a new control added in this dialog definition, and use the function without "User" in the name for standard
controls that are in the existing dialog.

"Changed" Flag

Each dialog keeps track of a "changed" flag so that it knows whether anything needs to be saved back to the
record when it's closed. When you add a new control to a dialog, the program already handles this flag
internally for obvious changes, e.g. when the value of the control is changed. However there may be times
that you need to change something internally and need to let the dialog know it. There is an expression
function DIgSetChangedFlag() for setting the "Changed" flag when needed. There's also a function to get
the current status of the flag, in case you want to see if something has changed before performing an action
of your own.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 71

Opening a Custom Dialog

Once you've created a new dialog, you need some way to open it. Use the function DIgOpenUserDialog()
with the dialog name to open the dialog. You can also give it the record to be used (in context). You might
want to do this from a Menu definition, an Event, or from a button action in another dialog.

This function returns True if the "Save" or "OK" button is clicked (or more specifically if the DIgClickSave()

function is called within the dialog expressions), or else it returns False if "Cancel" is clicked or if it's closed
with the "X" button.

Editing Dialogs

The Edit Dialog Definition dialog is shown when adding or editing Menus from Dialogs Setup.

Here you can view and edit all of the Items in a Menu Definition. There are a few fields you edit directly for
the definition, and the rest of the dialog lists the Dialog Elements.

Dialog Name

The name should at least be descriptive enough for identifying the Dialog in Dialogs Setup, but if it's a new
dialog rather than an Add-on, then this name will also be the title of the dialog when it's displayed and also
the name used to open it from the DIgOpenUserDialog() function. Each Dialog Definition must have a
unique name, whether it's an Add-on or not. The name is not case-sensitive, so "My Dialog" is considered
the same as "my dialog".

Add-On

To define changes or additions to a standard dialog, check this box and select the appropriate dialog from the
list. To create a brand new dialog, leave this box unchecked.

Only one Add-on Dialog Definition can be Enabled for each standard dialog, e.g. for the Reservation Details
dialog -- but you can actually create multiple definitions for the same dialog as long as only one is Enabled at
a time. Thus you could experiment with a new definition without taking it "live" by changing which one is
enabled. (Technically, with some clever expression scripting, you could have multiple definitions that are
enabled & disabled dynamically depending on other conditions -- so it's possible to have more dynamic
changes, but that's too advanced to be covered in detail here.)

Enabled (Add-on only)

An Add-on Dialog Definition can be disabled by unchecking this box, so that it does not get processed. This
is only applicable to Add-on dialogs, because non-add-on dialog definitions aren't automatically used (only
opened explicitly through an expression function). If an add-on dialog definition is disabled then it won't
modify the base dialog at all, as if the definition is not even there.

Base Table (non-Add-on only)

A Dialog Definition that's not an Add-on needs to have a Base Table selected (any Add-on has a base table
already defined by the dialog it's modifying). Select the table for the type of record will be shown (and
possibly modified) in the dialog. In general, any new dialog is assumed to be operating on a single record of
the selected type, and this context record is specified when the dialog is created through the
DlgOpenUserDialog() function.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 72

The Base Table selection also affects which fields are available in the Quick-Add Fields function (described
in the Dialog Elements List section to follow).

Width & Height

The units for these values are screen pixels, so you should know the resolution of the screen (or screens) to
be used. As a general guide, Campground Master typically uses dialogs that will fit on 640x480 screens, but
some will be sized for 800x600 screens automatically if the current resolution is high enough. Since most
modern systems have a resolution of 1024x768 or higher, it's possible that you can use much larger dialogs
to allow for more fields.

Note: If you're using Campground Master on multiple computers, be sure to design for the lowest resolution
in use, otherwise the dialog may not be completely visible on some displays. Don't forget to take into
account any computers you use as backups or off-season work, for instance your laptop computer. You can
check the resolution on any computer by right-clicking on the Desktop and selecting Properties, then go to
the Settings tab.

For Add-on dialogs, the Width & Height specify how much the original dialog is enlarged, if at all. You can
enter O for either or both values if you don't need it enlarged for the changes you're making.

For non-add-on dialogs, the Width & Height specify the entire size of the dialog. This defaults to 600 x 400
by default, to make sure it fits on the smallest typical display (640x480, allowing for margins, task bars, etc.).

Quick-Add 'Save' & 'Cancel’ buttons (non-Add-on only)

When you create a new dialog, you usually want to have Save and Cancel buttons on it for saving or
cancelling the changes to the data fields. Clicking this button will automatically add Dialog Elements for
Save and Cancel functions in the typical upper-right positions in the dialog. The elements added will include
the Action expressions needed for typical functionality.

If you decide to change the size of the dialog after adding these, you can delete the previous Save and
Cancel elements and then click this button again to add them in the correct position for the new size. (Or you
could just edit the Left positions manually in the elements.)

If you add these before adding other Dialog Elements, then you might want to move them down to the bottom
when you're done so they're the last things controls in the tab order (more on that later).

Save & Test Dialog

This function allows you to quickly test the dialog, or at least see the results of your modifications. This
function can be used to test the dialog repeatedly without completely exiting the Edit function.

The appropriate host dialog will be opened (if it's an Add-on definition), or it will create and open your new
dialog, using the first record of the appropriate Base Table type as the context record. This allows you to
basically see where new items are positioned, what the data looks like, test its functionality, etc.

Be careful when testing, because any changes to the data in the dialog (or other functions activated)
will be real changes!

Also be aware that it does completely save any changes you've made to the Dialog Definition as soon as you
click the Save & Test button, so it negates any possibility of cancelling changes you've made to the
definition.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 73

Dialog Elements List

A list of Dialog Elements appears on the Edit Dialog Definition dialog. Dialog Elements are actually records
linked to the Dialog Definition, so this list shows those linked records. As with most places where record lists
are manipulated, the typical functions are available to Add, Insert, Edit, Copy, Delete, and Move items in the
list. In addition, there are a few special functions as described below.

The list contains several fields of the elements, but depending on the element type there's no guarantee that
each of these fields will be applicable. So using good Notes for the elements can help later.

Note that some columns (e.g. any expressions) may be truncated (with "..." at the end). This is done
automatically to limit the column widths and keep long text from making the other columns hard to find.
(Even if the columns or the whole dialog is enlarged, it won't show these fields any longer here.)

Dialog Element Order (& Tab Order)

When a Dialog Definition is invoked, the items are processed one after another in the order they appear in
this list. While this in itself doesn't always make a difference, e.g. for "modification” or "action" element
types, the order of New Controls in the list determines the order the controls are added to the dialog. This in
turn affects the "Tab order", i.e. the order in which the fields are selected in the dialog (get input focus) when
the Tab key is pressed. In other words, for text input fields the order determines the sequence that the cursor
moves from one input field to the next.

In addition, the order of controls on the dialog is important for hot-key use. For instance if you define a label
for a text field as "&Name", so that the "N" is an underlined hot key, then the text input control for that field
must be the very next element in the list so that the cursor goes to that field when Alt-N is pressed.

Finally, the order is important for Radio type controls since it affects their grouping. This is covered in more
detail later, under Editing Dialog Elements.

Quick-Add Fields

This is a special function used to easily add the necessary Dialog Elements for entering (or modifying)
database fields. You will be able to select multiple fields, and it will automatically add the elements (with
appropriate labels for input fields) positioned in a neat column on the dialog.

First you will need to specify several parameters for positioning the entry fields. The defaults will be set for
typical positioning, starting in the upper left of the dialog. You can leave these defaults alone and Continue,
at least for the first batch, if it's a new dialog. However if it's an Add-on, or if you've already added some
elements, then you'll probably need to adjust the starting left and top position. You can also adjust the
vertical spacing (to put multiple fields closer together or farther apart), as well as the left position and
maximum width of the entry fields.

Next, a list will be shown with fields for the appropriate table(s) for the type of dialog you're adding to, or for
the Base Table of a new dialog. Select as many fields as you want to add in one column of input fields. If
you need to add multiple columns, e.g. if they won't all fit in one column, then you need to do it in separate
sessions of Quick-Add Fields since this function won't automatically wrap to another column -- it will continue
adding elements even if they go past the bottom of the dialog.

While it will do some auto-adjustment (restriction) of the positioning specified based on the dialog size, you
may still end up with fields that go off the end of the dialog. You might also end up with overlapping controls,
since no overlap-checking is done. These can be modified individually, or you can delete all of the new
elements and try again.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 74

Import and Export Elements

These functions will import or export any selected elements to a CSV (text) file. The main purpose of this is
to copy the elements to a different Dialog Definition. You can also export commonly used sets of elements
for importing to Dialog Definitions you create later. Basically it's like doing a copy/paste of elements, but
going through a file instead of just the clipboard. Note that it's not the same as the import/export function for
a complete Dialog Definition -- it's strictly for copying or moving selected elements within a Dialog definition.

When exporting, only the elements selected are exported (they don't need to be sequential, e.g. you can use

Ctrl-click to select each element to export). When importing, all imported elements are added to the end of
the definition.

Editing Dialog Elements

The Edit Dialog Element dialog is shown when adding or editing elements from the Edit Dialog Definition
function.

Here you edit all of the components of a Dialog Element. This one dialog is used for all types of elements,
even though different information is needed for each type. To help avoid confusion, it will only show the
fields that apply to the element type that's currently chosen. Choosing a different Element Type will
completely change most of the fields available on the dialog.

The common fields available to all elements are described first, followed by the type-specific fields for each
element.

Element Type

Select the type of element you want to add. The dialog elements fall into several different categories:

Add a New Control -- This adds a new "control" to the dialog, such as an entry field, text, checkbox, selection

list, etc. Naturally the control is only added once, when the dialog is created, but any Action expressions in
the elements are still active as long as the dialog is open.

Madify a control -- Elements can be used to rename, move, resize or hide an existing control. These can
only be done for standard controls on the dialog, not new controls that you add. Multiple elements can act on
the same control, e.g. you can rename, move, and resize the same control using 3 different elements. These
elements are executed only once, when the dialog is created.

Action on input -- Data-entry types of controls can trigger an action when something is changed (when the
text is changed, a box checked, etc). You can define an expression to be executed when the action is
triggered, e.g. to do something when a button is clicked, or auto-format text as it's entered. This element can
only be added for standard controls, since the Add New Control element already contains an Action
expression for new controls. Any action elements stay active for the duration of the dialog.

Action on focus change -- This can be used to trigger an expression when a control gains or loses input focus
(e.g. due to a mouse click or Tab to the next control). These elements can be defined for either standard
controls or for new controls you add.

Action on data saved -- This element is triggered when data is saved to the record being edited. This is
usually done when "Save" is clicked on the dialog, but other things can trigger it too. This element can be
used to do special validation of the data, for instance.

Action on dialoqg initialization -- This element is triggered when the dialog is being initialized. You can use
this element to perform any other actions you want to when opening the dialog. Note that this is only

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 75

executed once, not for each record change (e.g. if changing records in Reservation Details), so the record
context is not necessarily useful. For instance It could be used to do initial validations, modify controls, or
showmessages.

Condition

This optional expression determines whether or not the element is used, and must return a True or False
boolean value. To edit the condition expression, click on the text box or click the Edit button next to it. The
Expression Creator dialog will be used to enter the expression.

If the condition returns False, then the element is considered non-existent -- if it's for a New Control element,
then the control won't be added. If it's for an element that modifies other controls, the modification won't take
place. And if it's for an action type of element, then the action will not take place.

Note that for action elements, this condition is checked only when the dialog is first created, not each time
there's a possible trigger, so a condition based on changes in the dialog cannot be checked here. If you want
the element to only execute an action if certain changeable conditions are satisfied at the time of the input or
focus trigger, then you need to check these conditions within the Action expression.

Notes

These notes are for your reference, and will also appear in the list of elements. We recommend putting
notes in especially for action type elements if the expression isn't obvious, but it's a good idea for any
element that's not obvious so you can tell what's going on if you need to edit the Dialog later.

"Add New Control" Elements

New control elements are used to add new data to a dialog, either to show the value or to allow the user to
change a value. You can also add your own buttons to the dialogs, perhaps to perform special functions or to
open a new dialog for entering a lot more information.

Control Name

This is a name to be used for the control internally, but is not the text shown for the control. A control name
should be unique within the dialog definition, so that it can be referenced in expressions (e.g. to set or save
the field's value) and referenced in other dialog elements. It may also help to indicate the type of control in
the name for easy reference. Typical control names might be "EmailButton”, "LastNameEntry",
"LastNameLabel", "SiteDirtyCheckbox", etc. Using multiple words without spaces like this also serves as a
reminder that the Control Name is not the text that gets displayed, but if you prefer to use spaces then you
may do so.

Note that the names may be case sensitive when referenced (e.g. "ButtonA" is not the same as "buttona"),
though this is not guaranteed. It's good practice to always assume the case must match.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 76

Control Type

Select the type of control from the list. Naturally the type of control determines what's shown on the dialog as
well as what it can do, how it acts, what kind of action it triggers, etc., so familiarity with Windows controls is
helpful. A brief description of each is given below.

Static text - Simple text (not editable), which will wrap as needed within the control's size
Edit text - A single line text input field

Edit text multi-line - A multi-line text input field

Edit text, Read-only - Similar to static, but has a box around it like an edit field

Edit text multi-line, Read-only - Same as above, for multiple lines.

Button - A clickable button with text in it.

Check box - A square checkbox input field for yes/no or true/false values

Radio button - A round check-button field for multiple-choice input values

Date selection - A date input field with a drop-down calendar selection

Date selection with checkbox - A date field that has a checkbox (unchecked = no date selected)
Time selection - A time entry field, with up/down buttons

List box - A multi-line list of items to choose from

Drop-down list box - A list of items to choose from, in drop-down form

Combo list box - Similar to a drop-down list, but any text can also be entered

Start of a group

This is generally only important when Radio button controls are added, since a set of radio buttons must be in
a "group" to act properly. In particular, when one radio button of a group is checked, it will automatically
uncheck any others in the group. Also, it allows the arrow keys to be used to select which item in the group is
checked, and the Tab key will move on to the next control outside the group.

Every new control has this option checked by default. When adding radio buttons for a multiple-choice
option, you should uncheck this for each button except for the first one. It's also important that the next
control in the dialog element list does have this option checked, so that it knows a new group (not part of the
radio group) is starting.

Left & Top position

Specify the upper left corner position of the control, in pixel units. The position 0,0 is in the upper left corner
of the dialog. It's usually desirable to leave a margin of about 10 pixels, so the default starting position is
10,10.

Width & Height

Specify the size of the control, in pixel units. Note that for drop-down list boxes and combo boxes, the height
specified is the maximum height after it's dropped down -- the control height when it's not dropped down
cannot be changed.

Control Text

This is the text that will appear in the control by default for text controls, buttons, check & radio boxes, and

edit controls. It's not applicable to date or time controls, or list & combo boxes. These types need to be
"filled in" from an Initialization expression, for instance.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 77

Initialize Expression

This expression is executed for each control, after the control is created and shown on the dialog. This is
where you should "populate” the value of the field if it's a data field. You can also use this to set static text
fields to a value that depends on the context record, for instance. To edit the expression, click on the text
box or click the Edit button next to it. The Expression Creator dialog will be used to enter the expression.

There are DlgSetUserCitrl...() functions for each type of control, so you should use the appropriate
expression to set the value of the control. Here's an example, setting an Edit control to the current value of

the "# Adults" reservation field:
Dl gSet User Ctrl Text ("# Adults Input", FieldText(ThisResv(),"Resv_Adult"))

For list and combo box fields, you'll also need to populate the list of selections, using DIgAddUser...()
function calls. Here's part of an example for a Site Type list, including a blank entry at the top (assuming you
want the option to leave it blank). Here the Eval() function is used so that many expressions can be

executed in sequence, in order to add all of the necessary options:
Eval (D gAddUser DropLi st Text (" Type Input",” "), D gAddUserDropLi st Text (" Type
Input”, "Normal RV'), ..

If you're not sure how to handle a particular type of input, use the Quick-Add Fields function in Edit Dialog
Definition to add a similar type of field. It will fill in an appropriate expression for you.

OK/Save Expression

This expression is executed for each control when the "Save" function is done for the dialog (e.g. when
DlgClickSave() is called in a new dialog, usually done when the "Save" button is clicked). This is where you
would get the final value of the control and put it into the data field of the appropriate record. To edit the
expression, click on the text box or click the Edit button next to it. The Expression Creator dialog will be used
to enter the expression.

It may be tempting to do validation here, but there's no way to abort the saving here if the value isn't valid.
See the other element type, "Action on data Saved", for a good place to do validation. Of course if you just
need to modify the value, e.g. convert the typed text to upper case, then you can do that here.

You should use appropriate expression functions to get the value of the control. There are
DlgGetUserCitrl...() functions for each type of control. Here's an example, getting an Edit field for the "#
Adults” reservation field and setting the data value:

Set Fi el dText (Thi sResv(), "Resv_Adult", D gGetUserCtrl Text("# Adults Input"))

If you're not sure how to handle a particular type of input, use the Quick-Add Fields function in Edit Dialog
Definition to add a similar type of field. It will fill in an appropriate expression for you.

Action Expression

This is optional expression which will be executed when the control's value is changed by the user (e.g. a
button or checkbox clicked, text edited, or a list selection changed. As with any expression, appropriate
context will be available. To edit the action expression, click on the text box or click the Edit button next to it.
The Expression Creator dialog will be used to enter the expression.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 78

"Modify Control" Elements

These element types, Rename, Move, Resize and Hide, allow you to change the standard controls of an
existing dialog. These cannot be used with new controls you add, since all of this can be specified in the new
control's element definition already.

Control ID

This specifies which dialog control will be modified. It must be entered as the internal ID of the control. To
find out what the ID is for a given control, you will probably need to contact the software provider. You can
also use a tool like the Spy++ program that comes with Microsoft development systems, if you have such a
tool available.

Position, Size, or Control Text

Depending on the type of element, fill in the appropriate information -- the new Left and Right position for
moving a control, or the new Width and Height for resizing a control, or the new Control Text for renaming a
control.

"Action on Input" Elements

These element types allow you to perform some action when the standard controls of an existing dialog are
clicked or the values changed (depending on the control type). These types of elements cannot be used with
new controls you add, since the action expression is specified in the new control's element definition already.

Note that "Action on button click” is used not only for button controls, but also for checkbox controls and radio
buttons. If the wrong type of action element is used for a control (e.g. a "button click” action for an Edit
control), the results are unpredictable.

Only one Action element for a given control will be processed at the time of the input trigger (based on the
order in the Dialog Elements list). You can define more than one action element for a control, using the
Condition expression to determine which one(s) will be used. But if more than one action element for the
same control meets the conditions and is "used", only the first one will be executed.

If you need to do more than one thing or check for dynamic conditions at the time of the input trigger, then
the Action Expression should handle everything in one expression.

Control ID

This specifies which dialog control will be modified. (See "Modify Control" Elements above for details.)

Action Expression

This is the expression which will be executed when the appropriate control change is triggered. As with any
expression, appropriate context will be available. To edit the action expression, click on the text box or click
the Edit button next to it. The Expression Creator dialog will be used to enter the expression.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 79

Execute action before normal processing

If this option is checked (and an Action expression entered), the Action expression will be executed before
any normal processing that might happen for the action. This may or may not be important, depending on
what you want to do.

The "normal processing" refers to the internal processing that the program normally does when this action is
triggered. In many cases it's nothing, e.g. when entering text for most fields. However in many cases there
is something done such as validation of the value, or changing what other fields are visible. And of course
any buttons clicked will do something important.

As an example, you might define an element to execute an action when the "+1M" button is clicked in
Reservation Details. If you need to make sure it's OK to do this before allowing it, then you would check this
"Execute action before..." option so you can do your check and keep the function from happening if needed).
However if you want the normal action to take place first (updating the date) before executing your
expression, then don't select this option.

Abort the operation which triggered this action

If this is checked, then the Action Expression should return a True or False (boolean) value. If the value is
False, then any normal processing is aborted. Obviously this is only useful if you also check the option to
execute your action before normal processing, since there's nothing to abort after the normal processing.

As an example, you can do some validation or prompt the user when a button is clicked (e.g. to Check In a
reservation), which would naturally need to be done before the normal processing, and return False in your
Action expression to abort the operation if you don't want it to continue.

"Action on Focus Change" Elements

These elements can be used to trigger an expression when a control gains or loses input focus (e.g. due to a
mouse click on the control, or the Tab key pressed to get to the next control). These elements can be
defined for either standard controls or for new controls you add.

As described for "Action on Input” elements, only the first applicable focus change element will be used for a
given dialog control.

Control ID or Control Name

This specifies which control will be modified. If it's for a standard (existing) control, fill in the Control ID (see
"Modify Control" elements above for details.) If it's for a new control, fill in the Control Name of the new
control (which must match the Control Name in the new control element definition).

Action Expression

This is the expression which will be executed when the control loses or gains focus. To edit the action
expression, click on the text box or click the Edit button next to it. The Expression Creator dialog will be used
to enter the expression. The expression is always executed after the focus change actually happens (so for

instance you can set focus somewhere else).

The focus change cannot be aborted, so the return value of this expression is not used.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 80

"Action on Data Saved" Elements

For add-on Dialog Definitions, this element is triggered when data is saved to the record being edited.

For new dialogs, this is triggered when the DIgClickSave() function is executed. This is usually done in the
Action expression for the "Save" button, so it will happen when "Save" is clicked on the dialog.

Action Expression

This is the expression which will be executed when the data is saved to the record being edited. Note that for
add-on dialogs this isn't necessarily just when the dialog is closed -- for instance when used in the Customer
Details dialog (Edit Customer), this is done whenever the customer being viewed is changed also, e.g.
through the Next and Prev buttons.

To edit the action expression, click on the text box or click the Edit button next to it. The Expression Creator
dialog will be used to enter the expression.

Execute action before normal processing

If this option is checked, the Action expression will be executed before any normal processing that the dialog
does for saving -- generally this means before the data is actually saved into the record. Thus you can do
any validation of your own before anything is saved, with the option to abort the changes before actually

saving them.

If this option is not checked, then the Action expression is not executed until all of the normal "Save"
processing is performed by the dialog, e.g. the data validated and saved.

Note that it is possible to have two "Action on Data Save" elements, one to be executed before and one to be
executed after the normal processing.

Abort the operation which triggered this action

If this is checked, then the Action Expression should return a True or False (boolean) value. If the value is

False, then any normal processing (validation and saving data) is aborted. Obviously this is only useful if
you also check the option to execute your action before normal processing.

Event Actions

Overview

Event Action definitions allow you to "inject" functionality into Campground Master by trapping, or
intercepting, a specific change or activity in the program. There are many pre-defined "Events" in the
program that can be intercepted and acted upon, and you can conditionally execute any expression in the
context of that event. In many cases you can not only perform an action but also stop the event from
completing. For instance, you can check new reservations for meeting certain criteria like minimum stays on
holiday weekends, and not allow it to be saved unless it meets this criteria.

Most reservation status changes are trappable events, as well as some customer and transaction changes
and dialogs. There are also some general actions like operator log-in and log-out, program start and stop,
and timer events to allow an action to be performed every second, minute, hour or day.

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 81

As with all advanced customizations, this requires a rather technical understanding of the system. However
it must also be emphasized that Event Actions are much more "dangerous” than any other
customizations because they define actions that happen automatically, potentially changing the
overall operation of the program, and also potentially causing a serious system malfunction.

Event Actions Setup

To create an Event Action, go to Maintenance / Advanced Customizations / Event Actions. This opens the
Event Actions Setup dialog, which lists all current Event Actions and has the typical functions for Adding,
Inserting, Editing, etc.

You can also Export one or more Event Actions to a text file, or Import Event Actions. This is primarily for
you to import Actions created by the software provider, though it can also be used to transfer Actions
between multiple databases.

Event Actions cannot have duplicate names. If you make a Copy of an Action, text like "(copy 1)" will be
added to the name to make sure it's unique. Of course you can change this to be more appropriate.
Duplicate checking for the names is not case-sensitive ("My Action" is considered the same as "my action").

Rearranging Event Actions

The order in which the Event Actions appear here in Event Actions Setup will determine the order in which
they're processed, in particular if there's more than one Action defined for the same Event Trigger. While
this is not likely to matter in most cases, if more than one Action is triggered by the same Event, then the
results of one could affect other. If you want to move them around, use the Move Up and Move Down
buttons.

Editing Event Actions

The Edit Event Action dialog is shown when adding or editing an Action from Event Actions Setup.

Action Name

The name should be descriptive enough for selecting the Action form the Setup list -- the name is not used
anywhere else. Each Action must have a unique name (which is not case-sensitive).

Enabled

The Action can be disabled so that it does not get triggered regardless of the conditions. Technically you

could also delete the Action, but if you might want to use it later or keep it for reference then it's better to just
disable it. This is also handy for disabling Actions you haven't finished or tested sufficiently.

Note that Event Actions don't have an access level setting (presumably most actions should happen no
matter who is logged in) -- if an action should depend on an access level, then include an expression to
check the level of the current operator in the Condition (see below).

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 82

Event Trigger

Select the event from the list that you want to trigger your action. Note that most events have both a "before"
and "after" option, so for instance you can do an action before and/or after the event is processed internally.
As an example, you can have an action that does some validation before a reservation is checked in
(optionally preventing the check-in with the Abort option below). You could also have an action that's
triggered after the check-in is complete, such as printing a form (which would not get triggered if the check-in
was aborted).

Note that there are some grey areas as far as exactly when the action will be triggered, which means the
internal sequence is not strictly defined and could change in future versions. For instance an after-check-in
action is guaranteed to be triggered after the "Checked In" status is changed for a reservation, but it whether
it's triggered before or after the charges and payments are applied, a receipt is printed, and other
synchronized reservations are updated is all grey area -- so try not to assume anything about related
changes.

While there are events for viewing customer and reservation details and transactions, don't forget that the
Dialog customizations can also allow expressions to be executed when entering or exiting these dialogs (after
the dialog is opened and before it's closed, as opposed to before it's opened and after it's closed). The exact
nature of what you need to do might make using one or the other of these customizations more appropriate.

Time Triggers

There are triggers for "Every Second", "Every Minute", "Every Hour" and "Every Day". They sound self-
explanatory enough, but there are several caveats to these.

Generally these are triggered at the "change” of the minute, hour, and day (when the system first notices that
it has changed, e.g. the "Every Hour" trigger will happen as soon as the hour digit changes on the clock).

However, timed events are suspended when any dialog is open so that the operator is not interrupted (and
because the data could be in an inconsistent state while a dialog is open). Once all dialogs are closed, then
event checking is resumed. For "Every Second" events, this generally means that all intervening triggers are
lost (e.g. it won't try to catch up with possibly 100's of "missed" triggers). However it does check against the
last time an event was actually triggered, so for instance if the Minute or Hour rolled over while a dialog was
open, then that event will immediately be triggered as the change is noticed. Of course this also means that
the event is not guaranteed to happen "exactly" at the roll-over time.

It can be difficult to get events to happen at regular intervals with any consistency. For instance if you want
something done every 30 minutes, one method would be to define an "Every Minute" trigger, and use the
Condition expression to check for the current time's Minutes being either 0 or 30. However, if a dialog is
open for more than a minute, e.g. from 3:59 to 4:01, then the event completely misses the 4:00 check and
the condition won't be met until 4:30 (assuming a dialog is not open then also...). One way around this is to
create your own Setting that stores the last time your Condition expression was executed, and check for that
being 30 minutes ago (or longer). Then you don't rely on the exact time the event is triggered, but it's still
subject to how long a dialog is left open, so intervals would commonly vary from 30 minutes to perhaps 45
minutes or more, depending on how long an operator works on something.

Important Note: It may be tempting to do something like this Every Second to make sure it's checked as
often as possible. However you don't want to execute a complex expression every second, since it could
significantly lock up the system, so be conservative on how often something needs to be done. For instance,
setting the value of a Setting can take significant time because it involves a database change (which means
immediately saving the database to the hard disk, refreshing views, synchronizing other workstations, etc.),
which could completely lock up the system. (In fact it would be more efficient to use a file to read & write the
last-checked time, since it won't affect anything else and is much faster than writing the whole database.)

Copyright © Cottonwood Software 2006

Campground Master v4.0 Maintenance Functions 83

Condition

This expression is executed when the action is triggered, and the result determines whether the Action is
executed. Naturally the result should be a boolean (True or False) value, or else leave the expression blank
to always execute the Action. If the event involves a particular record, e.g. a Reservation, then the
appropriate context information will be available to the expression.

To edit the condition expression, click on the text box or click the Edit button next to it. The Expression
Creator dialog will be used to enter the expression.

Action

This is the expression to execute for the event (if the Condition is met, of course). If the event involves a
particular record, e.g. a Reservation being checked in, then the appropriate context information will be
available to the expression. The result of the expression is ignored and can be any type of value unless the
Abort option is selected (below).

To edit the action expression, click on the text box or click the Edit button next to it. The Expression Creator
dialog will be used to enter the expression.

Abort the Event....

If this option is selected, then the result of the Action expression is checked for a False (.F.) value (the result
of the Action expression should be a boolean value, of course). If it's False, then any further processing for
the event which triggered this action will be aborted. Obviously this is usually only useful for a "before" type
of event trigger, since the "after” triggers only happen after all of the important stuff has already happened.
However if you define more than one "after" action for the same event, then aborting will stop any following
Actions from being processed.

This is generally used to check some special condition before continuing with an event like checking in,
checking out, etc. You could even open a special dialog or prompt for the user (e.g. "Is the customer over 18
years old?"), and decide whether or not to continue based on the results.

Note: It's usually a good idea to include a MessageBox() function in the Action expression to show a

message if you're going to abort further processing, so that the user knows that the event is going to be
aborted (and why).

Import Package

This function, available through Maintenance / Advanced Customizations / Import Package, is primarily for
you to import customizations created by the software provider. This difference between this function and the
"Import" functions available on the various Setup dialogs (e.g. Setup Forms) is that this function will import
every record in the selected file no matter what kind it is -- so it can import Forms, Dialogs, Menus, Color
Schemes, etc in one step instead of going to each function separately.

When you select this function you'll get a typical Windows file dialog labelled "Import Package”. You need to
locate the appropriate folder which contains the package file, select the appropriate file, and click Open.
Once the package is imported, nothing in particular will indicate success -- however there may be a warning
shown due to duplicate names imported.

Note that the import/export files use the "CSV" file extension (e.g. "Sample.csv"), which means it's a comma-
separated-value text file. Windows may recognize this file as something another program can open, but
these are in a special format for Campground Master and should not be used in other programs.

Copyright © Cottonwood Software 2006

	Maintenance Functions
	Advanced Customizations
	Overview
	Tab Views Setup
	Expressions
	Overview
	Expression Syntax
	Expression Context
	Expression Processing
	Expression Creator Dialog
	Expression Elements Dialog
	Macros
	Scripts
	Function Reference
	Function Types
	Context (This...)
	Conversion
	Database
	Database Modification
	Date & Time
	Financial
	Flow
	General & System
	Inspection
	Math
	Settings
	Text
	User Interaction
	User-defined Dialogs

	Color Schemes
	Default Global Color Schemes
	Queries
	Overview
	Queries Setup
	Editing List Queries
	Editing Query Columns
	Sorting Hierarchies
	Filter Conditions
	Save & Test Query
	Editing Cross-Table Queries
	Cross-Table Axis/Groupings
	Cross-Table Custom Groupings

	Forms
	Overview
	Forms Setup
	Editing Forms
	Form Elements List
	Editing Form Elements
	Form Selection Dialog

	Menus
	Overview
	Menus Setup
	Editing Menus
	Menu Items List
	Editing Menu Items

	Dialogs
	Overview
	Dialogs Setup
	Editing Dialogs
	Dialog Elements List
	Editing Dialog Elements

	Event Actions
	Overview
	Event Actions Setup
	Editing Event Actions

	Import Package

